Changes in Myrosinase Activity and Total Glucosinolate Levels in Korean Chinese Cabbages by Salting Conditions

배추 절임조건에 따른 Myrosinase 활성 및 Total Glucosinolates 함량 변화

  • 황은선 (전주대학교 가정교육과)
  • Received : 2009.12.08
  • Accepted : 2010.02.10
  • Published : 2010.02.28

Abstract

Korean Chinese cabbage (Brassica campestris L. ssp. pekinensis) is one of the major cruciferous vegetables. Cruciferous vegetables contain a series of relatively unique secondary metabolites of amino acids called glucosinolates. Although glucosinolates do not appear to be bioactive, they are hydrolyzed by plant myrosinase when the cells in plants are damaged, and release biologically active compounds such as isothiocyanates, nitriles, and thiocyanates. The objective of this study was to determine the myrosinase activity and total glucosinolate levels of Korean Chinese cabbages by different salting times (0, 12, 18, and 24 h) and salt concentrations (6, 10, 14%). The total water content, salt content, and pH of brined cabbages decreased with increasing salting time. The myrosinase activity as determined by a glucose kit, decreased with increasing salting time and salt content. The total glucosinolates were purified using an anion exchange column and measured by UV-visible spectrophotometer. The fresh Korean Chinese cabbages contained $25.38{\pm}1.45\;{\mu}mol/g$ dry weight of glucosinolates. However, the total glucosinolates of brined cabbages decreased with increasing salting time and salt concentration. After 24 h of salting time, the total glucosinolates of brined cabbages rapidly decreased by $16.12{\pm}11.09$, $11.25{\pm}10.91$, $9.29{\pm}10.73\;{\mu}mol/g$ in 6%, 10%, and 14% salt solution, respectively. Overall, the total glucosinolate levels of Korean Chinese cabbages were found to vary inversely with salting time and salt concentration.

배추의 절임조건에 따른 수분함량, 염도 및 pH 변화를 측정하였다. 절임에 사용한 소금의 농도가 높고 절임 시간이 증가할수록 배추의 수분 함량은 감소하는 것으로 나타났다. 이는 삼투압에 의하여 조직액의 용출 및 소금의 침투로 나타나는 현상으로 절임배추 특유의 조직 감과 관련이 있는 것으로 판단된다. 염분 농도가 비교적적은 6%에서는 삼투압의 변화가 비교적 적게 일어나 비교적 일정한 염분 농도를 유지하는 반면에, 소금의 농도를 증가시키면 절임과정 중에 배추의 삼투압에 변화가 일어나 배추에서 유출된 수분으로 초기에 사용한 소금의 염도보다 감소하였다. 절임 전 신선한 배추의 pH는 약 알칼리(pH 7.8~8.2)에서 절임시간이 경과할수록 점차로 낮아지는 것으로 나타났다. 이는 절임 과정 중에 배추에 존재하는 유기산이 용출 및 초기 발효에 의해 pH가 감소했을 것으로 판단된다. 절임시간이 경과할수록, 절임에 사용한 소금의 농도가 증가할수록 myrosinase 활성이 점차로 감소하였다. 배추의 절임시간이 길어지고 사용한 소금의 농도가 증가할수록 pH가 감소하는 것은 myrosinase 의 최적 활성을 나타내는 pH 범위를 벗어나게 되어 효소활성이 급격히 감소하는 것으로 판단된다. 절임에 사용한 소금의 농도와 절임시간이 증가함에 따라 total glucosinolates의 함량도 더 많이 감소함을 확인하였다. 이는 배추와 소금물이 접촉하면서 배추의 세포막이 파괴되고 세포 내에 있는 myrosinase의 작용에 의해 glucosinolates가 가수분해 되어 다양한 분해산물을 형성하는 것으로 판단된다. 이러한 변화는 절임공정에서 물리적 절단, 삼투압 현상으로 인한 조직의 손상, pH 변화 등에 의하여 glucosinolates가 가수분해 과정을 거쳐 분해산물을 생산하는 것으로 판단된다.

Keywords

References

  1. Al-Turki AI, Dick WA. 2003. Myrosinase activity in soil. Soil Sci Soc Am J 67(1):139-145 https://doi.org/10.2136/sssaj2003.0139
  2. Brzezinski W, Medelewski P. 1984. Determination of total glucosinolate content in rapeseed meal with thymol reagent. Z Pflanzenzuchtg 93:177-183
  3. Choi MY, Choi EJ, Cha BC, Park HJ, Rhim TJ. 1996. Effect of pine needle (pinus densiflora Seib et Zucc) sap on kimchi fermentation. J Korean Soc Food Nutr 25(6):899-906
  4. Clarke JD, Dashwood RH, Ho E. 2008. Multi-targeted prevention of cancer by sulforaphane. Cancer Lett 269(2):291-304 https://doi.org/10.1016/j.canlet.2008.04.018
  5. Fenwick, GR, Mullin WJ. 1983. Glucosinolates and their breakdown products in food and food plants. Food Sci Nutr 18(2):123-201
  6. Fuller Z, Louis P, Mihajlovski A, Rungapamestry V, Ratcliffe B, Duncan AJ. 2007. Influence of cabbage processing methods and prebiotic manipulation of colonic microflora on glucosinolate breakdown in man. Br J Nutr 98(2):364-372 https://doi.org/10.1017/S0007114507709091
  7. Gliszczyńska-Swigło A, Ciska E, Pawlak-Lemańska K, Chmielewski J, Borkowski T, Tyrakowska B. 2006. Changes in the content of health-promoting compounds and antioxidant activity of broccoli after domestic processing. Food Addit Contam 23(11):1088-1098 https://doi.org/10.1080/02652030600887594
  8. Hayes JD, Kelleher MO, Eggleston IM. 2008. The cancer chemopreventive actions of phytochemicals derived from glucosinolates. Eur J Nutr 47(suppl 2):73-88
  9. Hwang ES, Lee HJ. 2006. Phenylethyl isothiocyanate and its N-acetylcysteine conjugate suppress the metastasis of SKHep1 human hepatoma cells. J Nutr Biochem 17(12):837-846 https://doi.org/10.1016/j.jnutbio.2006.02.004
  10. Jo JS. 2000. The study of kimchi. Yurim Munhwasa, Seoul, Korea.
  11. Jung JI, Hong EY, Kim MK, Jung JW, Oh, JY, Kwon MS, Lee KP, Kim GH. 2009. Changes in total glucosinolates levels and physico-chemical properties of Kimchi using Korean Chinese cabbage of harvest time according to various storage condition. Korean J Food Preserv 16(5):612-617
  12. Kang KS, Seo KI, Shim KH. 1995. Purification and enzymatic characteristics of myrosinase from Korean cabbage. J Korean Soc Food Nutr 24(4):563-569
  13. Kim MJ, Hong GH, Chung DS, Kim YB. 1998. Quality comparison of Kimchi made from different cultivars of Chinese cabbage. Kor J Food Sci Technol 39(5):528-532
  14. Kim YK, Kim GH. 2003. Changes in 3-butenyl isothiocyanate and total glucosinolates of seeds and young seedlings during growth of Korean Chinese cabbages. Korean J Food Preserv 10(3):365-369
  15. Lee KH, Cho HY, Pyun YR. 1991. Kinetic modelling for the prediction of shelf-life of Kimchi based on total acidity as a quality index. Korean J Food Sci Technol 23:306-310
  16. Lee MH, Lee GD, Son KJ, Yoon SR, Kim JS, Kwon JH. 2002. Changes in organoleptic and rheological properties of Chinese cabbage with salting condition. J Korean Soc Food Sci Nutr 31(3):417-422 https://doi.org/10.3746/jkfn.2002.31.3.417
  17. Lee IS, Park WS, Koo YJ, Kang KH. 1994. Change in some characteristics of brined Chinese cabbage of fall cultivars during storage. Kor J Food Sci Technol 26(3):239-245
  18. McNaughton SA, Marks GC. 2003. Development of food composition database for the estimation of dietary intakes of glucosinolates, the biologically active constituents of cruciferous vegetables. Br J Nurt 90(3):687-697 https://doi.org/10.1079/BJN2003917
  19. Rungapamestry V, Duncan AJ, Fuller Z, Ratcliffe B. 2006. Changes in glucosinolate concentrations, myrosinase activity, and production of metabolites of glucosinolates in cabbage (Brassica oleracea Var. capitata) cooked for different durations. J Agric Food Chem 54(2):7628-7634 https://doi.org/10.1021/jf0607314
  20. Shim YH, Ahn GJ, Yoo CH. 2003. Characterization of salted Chinese cabbage in relation to salt content, temperature and time. Korean J Soc Food Cookery Sci 19(2):210-215
  21. Shim KH, Sung NK, Kang KS, Ahn CW, Seo KI. 1992. Analysis of glucosinolates and the change of contents during processing and storage in cruciferous vegetables. J Korean Soc Food Nutr 21(1):43-48
  22. Song L, Thornalley PJ. 2007. Effect of storage, processing and cooking on glucosinolate content of Brassica vegetables. Food Chem Toxicol 45(2):216-224 https://doi.org/10.1016/j.fct.2006.07.021
  23. Stoewsand GS. 1995. Bioactive organosulfur phytochemicals in Brassica oleracea vegetables: a review. Food Chem Toxicol 33(6):537-543 https://doi.org/10.1016/0278-6915(95)00017-V
  24. Volden J, Wicklund T, Verkerk R, Dekker M. 2008. Kinetics of changes in glucosinolate concentrations during long-term cooking of white cabbage (Brassica oleracea L. ssp. capitata f. alba). J Agric Food Chem 56(6):2068-2073 https://doi.org/10.1021/jf0731999