DOI QR코드

DOI QR Code

Protective Effect of White-Skinned Sweet Potato (Ipomoea batatas L.) against Renal Damage in Streptozotocin-Induced Diabetic Rats

Streptozotocin으로 유발된 당뇨쥐의 신장 손상에 대한 white-skinned sweet potato (Ipomoea batatas L.) 추출물의 보호효과

  • Jang, Hye-Won (Division of Endocrinology & Metabolism, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Bachri, Moch. Saiful (Faculty of Pharmacy, Ahmad Dahlan University) ;
  • Moon, Kyung-Ok (College of Pharmacy Kyungsung University) ;
  • Park, Jong-Ok (Department of Chemistry, Kyungsung University)
  • 장혜원 (성균관대학교 의과대 삼성서울병원 내분비내과) ;
  • ;
  • 문경옥 (경성대학교 약학대학 약학과) ;
  • 박종옥 (경성대학교 화학과)
  • Received : 2009.11.12
  • Accepted : 2010.02.06
  • Published : 2010.02.28

Abstract

White-skinned sweet potato (Ipomoea batatas L.) has been traditionally used for diabetes treatment and management in many countries. In this experiment, methanol extract of white-skinned sweet potato (WSPMe) at a dose of 100 or 200 mg/kg body weight was tested to evaluate its effect on renal damage in streptozotocin (STZ)-induced diabetic rats. Its efficacy was compared with that of insulin secretogogue, glimepiride ($50\;{\mu}g/kg$ body weight). Experimental diabetes was induced by a single dose of STZ (45 mg/kg, i.p.) injection. The WSPMe and glimepiride were administered orally for 14 days and the effects on glucose, renal markers including blood urea nitrogen (BUN), creatinine and lactate dehydrogenase (LDH), lipid peroxide (LPO) level, antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathion-S-transferase (GST) activities in kidney were studied. An increase in BUN, creatinine, LDH, glucose, LPO levels and decrease in SOD, CAT, GPx and GST features were observed in diabetic control rats. Administration of WSPMe at a dose of 200 mg/kg body weight caused a significant improvement in blood glucose, LPO level, renal markers, lipid peroxidation markers and increased antioxidant levels in diabetic kidney. In conclusion, the WSPMe was found to be effective in reducing oxidative stress, thus confirming the ethnopharmacological use of I. batatas L. in protecting diabetes and its complications.

White-skinned sweet potato (WSP, Ipomoea batatas L.)는 일본, 인도네시아 등에서 당뇨병과 그 치료에 민간에서 사용되고 있다. 본 실험에서는 WSP의 메탄올 추출물을 체중 1 kg 당 Dose 100, 200 mg을 투여하여 streptozotocin으로 유발된 당뇨쥐에서 손상된 신장 보호효과를 평가하였고 그 효능을 인슐린 분비촉진제인 glimepiride (45 mg/kg 체중)와 비교해 보았다. WSP 메탄올 추출물과 glimepiride를 2주 투여 한 후 혈당, 혈중 요소성 질소(BUN), 크레아티닌, 젖산 탈수소효소(LDH), 지질 과산화물(LPO) 함량, 그리고 항산화효소들인 superoxide dismutase (SOD), 카탈라아제(CAT), 글루타치온 과산화물 분해효소(GPx), 글루타치온 S-전이효소(GST) 등의 활성도를 측정하였다. BUN, 크레아티닌, LDH, 혈당, LPO 함량 등은 대조군에 비하여 그 값이 증가하였고, SOD, CAT, GPx, GST 값은 감소하였다. WSP 메탄올 추출물(200 mg/kg)을 투여한 후 측정한 값은 혈당, LPO, 신장병 표지인자인 BUN, 크레아티닌, LDH, 그리고 지질 과산화물 함량에서 의미있는 개선효과를 볼 수 있었고 항산화효소, 항산화물질의 증가도 나타났다. 따라서 WSP 메탄올 추출물은 당뇨쥐의 혈당을 낮추며 산화적 스트레스를 약화시키고 당뇨로 유발된 신장 손상을 보호해 주는 효과가 있다는 결과를 얻었다. 또한 민간에서 사용하고 있는 WSP가 실제로 당뇨 치료에 효과가 있음을 과학적 증거로 제공해 주었다고 판단된다.

Keywords

References

  1. Aebi, H. 1974. Catalase in "Method of enzymatic analysis", In Vergmeyer, H. U. (ed.), Academic press, New York, 2, 673-684.
  2. Attele, A. S., Y. P. Zhou, J. T. Xie, J. A. Wu, L. Zhang, L. Dey, W. Pugh, P. A. Rue, K. S. Polonsky, and C. S. Yuan. 2002. Antidiabetic effects of Panax ginseng berry extract and the identification of an effective component. Diabetes 51, 1851-1858. https://doi.org/10.2337/diabetes.51.6.1851
  3. Baynes, J. W. and S. R. Thorpe. 1997. The role of oxidative stress in diabetic complications. Curr. Opin. Endocrinol. 3, 277-284.
  4. Baynes, J. W. 1991. Role of oxidative stress in the development of complications in diabetes. Diabetes 40, 405-412. https://doi.org/10.2337/diabetes.40.4.405
  5. Bernhard, L., W. Werner, P. Rudolf, K. W. Alexandra, and P. Giovanni. 2003. Mode of Action of Ipomoea Batatas (Caiapo) in Type 2 Diabetic Patients. Metabolism clinical and experimental. 52, 875-880. https://doi.org/10.1016/S0026-0495(03)00073-8
  6. Bohlender, H. M., S. Franke, G. Steine, and G. Wof. 2005. Advanced glycation end products and the kidney. Am. J. Physiol. Renal Physiol. 289, F645-F659. https://doi.org/10.1152/ajprenal.00398.2004
  7. Bonnefont-Rousselot, D., J. P. Nastard, M. C. Jaudon and J. Delattre. 2000. Consequences of the diabetic status on the oxidant/antioxidant balance. Diabetes Metab. 26, 163-176.
  8. Cabaud, P. G. and F. Wroblewski. 1958. The determination of serum lactate dehydrogenase. American Journal Clinical Pathology 30, 234-236.
  9. Cao, G., E. Sofic, and R. L. Prior. 1996. Antioxidant capacity of tea and common vegetables. J. Agricul. Food Chem. 44, 3426-3431. https://doi.org/10.1021/jf9602535
  10. Chaney, A. L. and E. P. Marbach. 1962. Modified reagents for determination of urea and ammonia. Clinica Chimica Acta 8, 130-132.
  11. Chaudhry, J., N. N. Ghoxh, K. Roy, and R. Chandra. 2007. Antihyperglycemic effect of a new thiazolidine analogue and its role in ameliorating oxidative stress in alloxan-induced diabetic rats. Life Sci. 80, 1135-1142. https://doi.org/10.1016/j.lfs.2006.12.004
  12. Craik, F. I. and M. Salthouse. 1992. Handbook of Aging and Cognition, pp. 51-110, Hillsdale, New Jersey.
  13. Garber, A. J. 2002. Attenuating CV risk factors in patients with diabetes: clinical evidence to clinical practice. Diabetes, Obesity and Metabolism 4, S5-S12. https://doi.org/10.1046/j.1462-8902.2001.00038.x
  14. Goodman, L. S. and A. Gilman. 1985. The Pharmacological Basis of Therapeutics, pp. 1490-1510. 7th ed. Macmillan, New York.
  15. Grover, J. K., S. Yadav, and V. Vats. 2002. Medicinal plants of India with anti-diabetic potential. J. of Ethnopharmacology 81, 1-100. https://doi.org/10.1016/S0378-8741(02)00049-1
  16. Ha, H. and K. H. Kim. 1999. Pathogeniesis of diabetic nephropathy: the role of oxidative stress and proteinkinase C. Diabetes Res. Clin. Pract. 45, 147-151. https://doi.org/10.1016/S0168-8227(99)00044-3
  17. Habig, W., M. J., Pabst, and W. B. Jakoby. 1974. Glutathione S-transferases the first enzymatic step in mercapturic acid formation. J. Biol. Chem. 249, 7130-7139.
  18. Hamden, K., S. Carreau, K. Jamoussi, F. Aya, S. Lasmi, D. Aloulou, and A. Elfeki. 2009. 1,25-dihydroxyvitamin D3 : therapheutic and preventive effects against oxidative stress and hepatic, pancreatic and renal injury in diabetic rats. J. Nutr. Sci. Vitam. 56, 455-461.
  19. Hiramatsu, K. and S. Aomori. 1988. Increased superoxide production by mononuclear cells of patients with hypertriglyceridemia and diabetes. Diabetes 37, 832-837. https://doi.org/10.2337/diabetes.37.6.832
  20. Huang, G. J., H. Y. Chang, H. J. Chen, T. L. Lu, Y. S. Chang, M. J. Sheu, and Y. H. Lin. 2008. Effects of trypsin inhibitor on plasma antioxidant activity and lipid levels in mice from sweet potato roots, J. Sci. Food Agric. 88, 2556-2562. https://doi.org/10.1002/jsfa.3390
  21. Huang, Y. C., Y. H. Chang, and Y. Y. Shao. 2005. Effects of genotype and treatment on the antioxidant activity of sweet potato in Taiwan. Food Chemistry 98, 529-538. https://doi.org/10.1016/j.foodchem.2005.05.083
  22. Jennings, P. E., S. Chirico, A. F. Jones, J. Lunec, and A. H. Barnett. 1987. Vitamin C metabolites and microangiopathy in diabetes mellitus. Diabetes Res. 6, 151-154.
  23. Kakkar, R., J. Kalra, S. V. Manth, and K. Parsad. 1995. Lipid peroxidation and activity of antioxidant enzymes in diabetic rats. Mol. Cell. Biochem. 151, 113-119. https://doi.org/10.1007/BF01322333
  24. Kalt, W. 2005. Effects of production and processing factors on major fruits and vegetable antioxidants. J. Food Sci. 70, R11-E19. https://doi.org/10.1111/j.1365-2621.2005.tb09053.x
  25. Kang, K. S., H. Y. Kim, N. Yamabe, R. Nagai, and T. Yokozawa. 2006. Protective effect of sun ginseng against diabetic renal damage. Biol. Pharm. Bull. 29, 1678-1684.
  26. Kano, M., T. Takayanagi, K. Harada, K. Makino, and F. Ishikawa, 2005. Antioxidant activity of anthocyanins from purple sweet potato, Ipomoea batatas cultivar Ayamurasaki. Bioscience Biotechnology and Biochemistry 69, 979-988. https://doi.org/10.1271/bbb.69.979
  27. Laakso, M. 2001. Insulin resistance and its impact on the approach to therapy of type 2 diabetes. International Journal of Clinical Practice Supplemen. 8-12.
  28. Marklund, S. and G. Marklund. 1974. Involvement of the superoxide anion radical in the autooxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem. 47, 469 https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
  29. McLennan, S. V., S. Heffnan, L. Wright, C. Rae, E. Fisher, D. K. Yue, and J. R. Turtle. 1991. Changes in hepatic glutathione metabolism in diabetes. Diabetes 40, 344-348. https://doi.org/10.2337/diabetes.40.3.344
  30. Ohkawa, H., N. Ohishi, and K. Yagi. 1979. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical. Biochemisty 95, 351-358. https://doi.org/10.1016/0003-2697(79)90738-3
  31. Oki, T., M. Masuda, S. Furuta, Y. Nishiba, N. Terahara, and I. Suda. 2002. Involvement of anthocyanins and other phenolic compounds in radical scavenging activity of purplefleshed sweet potato cultivars. J. of Food Science 67, 1752-1756. https://doi.org/10.1111/j.1365-2621.2002.tb08718.x
  32. Paglia, E. D. and W. N. Valentine. 1967. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. Clin. Med. 70, 158-169.
  33. Ramkumar, K. M., P. Ponmanickam, S. Velayuthaprabhu, G. Archunan, and P. Rajaguru. 2009. Protective effect of Gymnema montanum against renal damage in experimental diabetic rats. Food and Chem. Toxic. 47, 1-6. https://doi.org/10.1016/j.fct.2008.07.001
  34. Randle, P. J., P. B. Gailand, C. N. Hales, and E. A. Neiosholine. 1963. The glucose and fatty acid cycle: its role in insulin sensitivity and metabolic disturbance of diabetes. The Lancet 1, 785-790.
  35. Robertson, R. P., J. Harmon, P. P. Tran, Y. Tanaka, and H. Takahashi. 2003. Glucose toxicity in $\beta$-cells: type 2 diabetes, good radicals gone bad, and the glutathione connection. Diabetes 52, 581-587. https://doi.org/10.2337/diabetes.52.3.581
  36. Rully, M. 1988. Pengaruh infus batang ubi jalar (Ipomoea batatas Poir) sebagai antidiabetik pada binatang percobaan tikus. JF FMIPA NHAS 109.
  37. Ruzaid, A., I. Amin, A. G. Nawalyah, M. Hamid, and H. A. Faizul. 2005. The effect of Malaysian cocoa extract on glucose levels and lipid profiles in diabetic rats. J Ethnopharmacol. 98, 55-60. https://doi.org/10.1016/j.jep.2004.12.018
  38. Shuichi, K., A. Hiroyuki, and T. Hirohide. 2001. Isolation of Antidiabetic Components from White-Skinned Sweet Potato (Ipomoea batatas L.). Biosci. Biotechnol. Biochem. 65, 109-114. https://doi.org/10.1271/bbb.65.109
  39. Singh, N., V. Kamath, and P. S. Rajini. 2005. Attenuation of hyperglycemia and associated biochemical parameters in STZ-induced diabetic rats by dietary supplementation of potato peel powder. Clin. Chim. Acta 353, 165-175. https://doi.org/10.1016/j.cccn.2004.10.016
  40. Slot, C. 1973. Determination of serum creatinine by a direct method. Clinica Chimica Acta 43, 305-310. https://doi.org/10.1016/0009-8981(73)90466-X
  41. Stefek, M., N. Tribulova, A. Gajdoski, and A. Gajdosikova. 2002. The pyridoindole antioxidant stobadine attenuates histochemical changes in kidney of STZ-induced diabetic rats. Acta Histoche. 104, 413-417. https://doi.org/10.1078/0065-1281-00681
  42. Szkudelski, T. 2001. The mechanism of alloxan and streptozotocin action in $\beta$-cells of the rat pancreas. Physiol. Res. 50, 537-546.
  43. Tarique, A., M. Sharma, K. K. Pillai, S. E. Haquea, M. M. Alam and M.S. Zaman. 2007. Protective effect of bezafibrate on streptozotocin-induced oxidative stress and toxicity in rats. Toxicology 229, 165-172. https://doi.org/10.1016/j.tox.2006.10.016
  44. Teow, C. C., V. D. Truong, R. F. McFeeters, R. L. Thompson, K. V. Pecota, and G. C. Yencho. 2007. Antioxidant activities, phenolic and $\beta$-carotene contents of sweet potato genotypes with varying flesh colours. Food Chemistry 103, 829-838. https://doi.org/10.1016/j.foodchem.2006.09.033
  45. Toshiro, M., E. Sumi, K. Mio, F. Keiichi, S. Koichi, T. Norihiko, and M. Kiyoshi. 2002. Anti-hyperglycemic effect of diacylated anthocyanin derived from Ipomoea batatas Cultivar Ayamurasaki can be achieved through the $\alpha$-glucosidase inhibitory action. J. Agric. Food Chem. 5, 7244-7248.
  46. Ugochukwu, N. H., N. D. Bagayoko, and M. E. Antwi. 2004. The effects of dietary caloric restriction on antioxidant status and lipid peroxidation in mild and severe streptozotocin-induced diabetic rats. Clin. Chim. Acta 348, 121-129. https://doi.org/10.1016/j.cccn.2004.05.005
  47. Wolff, S. P., Z. Y. Jang, and V. J. Hunt. 1991. Protein glycation and oxidative stress in diabetes mellitus and ageing. Free. Radic. Biol. Med. 10, 339-352. https://doi.org/10.1016/0891-5849(91)90040-A
  48. Yamagishi, N., K. Nakayama, T. Wakatsuki, and T. Hatayama. 2001. Characteristic changes of stress protein expression in streptozotocin induced diabetic rats. Life Sci. 9, 2603-2609.
  49. Zhang, Z. F., S. H. Fan, Y. L. Zheng, J. Lu, D. M. Wu, Q. Shan, and B. Hu. 2009. Purple sweet potato color attenuates oxidative stress and inflammatory response induced by D-galactose in mouse liver. Food and Toxicology 47, 496-501. https://doi.org/10.1016/j.fct.2008.12.005