Screening on Receptor Tyrosine Kinase Inhibitory Activity of Marine Algae-Derived Symbiotic Microorganisms

해조류 공생미생물의 Receptor Tyrosine Kinase 억제효능 검색

  • Yun, Keum-Ja (Department of Chemistry, Pukyong National University) ;
  • Yang, Guohua (Department of Chemistry, Pukyong National University) ;
  • Feng, Zhile (Department of Chemistry, Pukyong National University) ;
  • Nenkep, Viviane N. (Department of Chemistry, Pukyong National University) ;
  • Xavier, Siwe-Noundou (Department of Chemistry, Pukyong National University) ;
  • Leutou, Alain S. (Department of Chemistry, Pukyong National University) ;
  • Kim, Gun-Do (Department of Microbiology, Pukyong National University) ;
  • Cho, Hee-Yeong (Pharmacology Research Center, Korea Research Institute of Chemical Technology) ;
  • Choi, Hong-Dae (Department of Chemistry, Dongeui University) ;
  • Son, Byeng-Wha (Department of Chemistry, Pukyong National University)
  • Received : 2010.01.23
  • Published : 2010.03.31

Abstract

In order to screen new receptor tyrosine kinase inhibitor which is expected to be anticancer drug lead, we have investigated receptor tyrosine kinase inhibitory activity on the marine alga-derived symbiotic microorganisms (500 strains). The significant activities (over 70% inhibition at $10\;{\mu}g/ml$) were observed in the extracts of ten strains (Strain No.: MFA018, 019, 206, 242, 325, 335, 343, 344, 354, 356), isolated from marine red algae, five strains (Strain No.: MFA030, 126, 213, 324, 339), isolated from the brown algae, and one strain (Strain No.: MFA272), isolated from the marine green algae, respectively. Among the active strains, MFA019 and 356 showed strong receptor tyrosine kinase inhibitory activity with $IC_{50}$ values of 0.6 and $0.9\;{\mu}g/ml$, respectively.

Keywords

References

  1. Fusetani, N. (ed.) (2000) Drugs from the sea. Karger, Basal, Switzerland.
  2. Henkel, T., Brunne, R. M., Muller, H. and Reichel, F. (1999) Statistical investigation into the structural complementarity of natural products and synthetic compounds. Angew. Chem., Int. Ed. 38: 643-647. https://doi.org/10.1002/(SICI)1521-3773(19990301)38:5<643::AID-ANIE643>3.0.CO;2-G
  3. Dreyfuss, M. M. and Chapela, I. H. (1994) In Gullo, V. P. (ed.), The Discovery of Natural Products with Therapeutic Potential, Butterworth-Heinemann: Boston, MA.
  4. Tubaki, K. (1992) Marine Microorganism as Drug Resources. In Yajima, H., Shioiri, T. and Ohizumi, Y. (ed.), Marine Resources for Drug Discovery. 313-334. Hirokawa Publishing Co. Tokyo, Japan.
  5. Demain, A. L. and Sanchez, S. (2009) Microbial drug discovery: 80 years of progress. J. Antibiot. 62: 5-16. https://doi.org/10.1038/ja.2008.16
  6. Choi, J. S., Lee, W. K., Son, B. W., Kim, D. -S., Choi, H. D., Choi, J. S., Jung, J. H., Im, K. S. and Choi, W. C. (2000) Screening on radical scavenging activity of marine microalgae. Kor. J. Pharmacogn. 31: 252-255.
  7. Li, X., Li, Y., Nam, K. W., Kim, D. -S., Choi, H. D. and Son, B. W. (2002) Screening of radical scavenging activity from the marine-derived fungus. Kor. J. Pharmacogn. 33: 219-223.
  8. Li, X., Li, Y., Jeong, J. H., Lee, K. T., Choi, H. D. and Son, B. W. (2003) Screening of tyrosinase inhibiting activity from the marine-derived fungus. Kor. J. Pharmacogn. 34: 138-141.
  9. Li, Y., Li, X., Son, B. W. and Choi, H. D. (2003) Screening of antimicrobial activity from the marine-derived fungus. Kor. J. Pharmacogn. 34: 142-144.
  10. Li, Y., Li, X. and Son, B. W. (2005) Antibacterial and radical scavenging epoxycyclohexenones and aromatic polyols from a marine isolate of the fungus Aspergillus. Nat. Prod. Sci. 11: 136-138.
  11. Zhang, Y. Ahn, E. -Y., Jiang, Y., Kim, D. -K., Kang, S. -G., Wu, C., Kang, S. -W., Park, J. -S., Son, B. W. and Jung, J. J. (2007) 3-Chloro-2,5-dihydroxybenzyl alcohol activates human cervical carcinoma HeLa cell apoptosis by inducing DNA damage. Int. J. Oncol. 31: 1317-1323.
  12. Casalini, P., Iorio, M. V., Galmozzi, E. and Mnard, S. (2004) Role of HER receptors family in development and differentiation. J. Cell Physiol. 200: 343-350. https://doi.org/10.1002/jcp.20007
  13. Ranson, M. (2004) Epidermal growth factor receptor tyrosine kinase inhibitors. Br. J. Cancer 90: 2250-2255. https://doi.org/10.1038/sj.bjc.6601873
  14. Herbst, R. S. (2004) Review of epidermal growth factor receptor biology. Int. J. Radiat. Oncol. Biol. Phys. 59 (2 suppl); 21-26. https://doi.org/10.1016/j.ijrobp.2003.10.027
  15. Dei Tos, A. P. and Ellis, I. (2005) Assessing epidermal growth factor expression in tumors: what is the value of current test methods? Eur. J. Cancer 41: 1383-1392. https://doi.org/10.1016/j.ejca.2005.03.018
  16. De Luca, A., Pignata, S., Casamassimi, A., D'Antonio, A., Gridelli, C., Rossi, A., Cremona, F., Parisi, V., De Matteis, A. and Normanno, N. (2000) Detection of circulating tumor cells in carcinoma patients by a novel epidermal growth factor receptor reverse transcription-PCR assay. Clin. Cancer Res. 6: 1439-1444.
  17. El-Rayes, B. F., and LoRusso, P. M. (2004) Targeting the epidermal growth factor receptor. Br. J. Cancer 91: 418-424. https://doi.org/10.1038/sj.bjc.6601921
  18. Jorissen, R. N., Walker, F., Pouliot, N., Garrett, T. P., Ward, C. W., and Burgess, A. W. (2003) Epidermal growth factor receptor: mechanisms of activation and signalling. Exp. Cell Res. 284: 31-53. https://doi.org/10.1016/S0014-4827(02)00098-8