Effects of Organic Materials on Soil Organisms in a Korean Ginseng Field

인삼재배지 유기물 시용이 토양미생물과 미소동물에 미치는 영향

  • Eo, Jin-U (Ginseng Research Division, Rural Development Administration) ;
  • Park, Kee-Choon (Ginseng Research Division, Rural Development Administration) ;
  • Lee, Sung-Woo (Ginseng Research Division, Rural Development Administration) ;
  • Bae, Yeoung-Seuk (Ginseng Research Division, Rural Development Administration) ;
  • Yeon, Byung-Ryul (Ginseng Research Division, Rural Development Administration)
  • Received : 2010.02.12
  • Accepted : 2010.04.13
  • Published : 2010.04.30

Abstract

The aim of this study is to evaluate the effects of organic materials on soil organisms. Changes in the community structure, and population density of soil organisms (microbes, nematodes, and microarthropods) were studied in a Korean ginseng field. Phospholipid fatty acids analysis showed that the relative abundances of bacteria, fungi, and actinomycetes did not differ significantly. The aerobes/anaerobes ratio was the lowest in soils amended with leaf mold, indicating that the decomposition speed was slow. Further, the addition of leaf mold to the soil enhanced the saturated/monounsaturated fatty acid ratio and cyclopropyl fatty acid/precursor ratio, which indicated an increase in environmental stresses. Application of pig manure compost (PMC) had positive effects on the population density of nematodes, and negative effects on that of oribatid mites. The population densities of nematodes, and microarthropods remained relatively low in the plots that had been treated with leaf mold or pig manure compost. It is suggested that pre-planting soil management directed at enhancing the biological decomposition efficiency should be continued over a long period to increase the soil bioactivity in virgin soils.

본 연구는 인삼재배지 포장에서 부엽토와 돈분퇴비 시용이 토양생물에 미치는 영향을 조사하고자, 토양미생물, 선충, 응애 등 미소동물의 군집과 개체밀도의 변화를 관찰하였다. 토양 미생물 군락 조성과 생태를 조사하기 위하여 인지질지방산을 추출하여 지표지방산으로 분석한 결과 세균, 곰팡이, 방선균의 상대밀도는 차이가 없었다. 부엽토 처리구에서 환경스트레스 지표인 포화지방산/단불포화지방산 비율과 Cyclopropyl 지방산/전구체 지방산 비율이 높게 나타났으며, 호기성/혐기성균 비율이 낮았던 것은 유기물의 분해속도가 느리다는 것을 시사한다. 돈분퇴비 처리구에서 내생균근균인 VAM의 상대밀도 증가는 pH 증가의 영향으로 보이지만, 유기물 증가에도 불구하고 그램음성균/그램양성균 비율과 스트레스 지표가 대조구와 차이가 없었던 것은 EC나 pH 증가 등으로 인한 토양의 이화학성 변화에 의한 결과로 보인다. 돈분퇴비 시용구에서 선충의 개체밀도는 증가하였지만, 날개응애류의 개체밀도는 감소하였다. 부엽토 또는 돈분퇴비의 시용에도 불구하고 토양동물의 개체밀도는 일반 농경지와 비교할 때 매우 낮은 수준으로 나타났으며, 개간지의 경우 장기간의 예정지 관리를 통해 토양생물의 밀도를 높여 유기물의 분해효율을 증가시키는 과정이 필요할 것으로 판단된다.

Keywords

References

  1. Bulluck, L.R., K.R. Barker, and J.B. Ristaino, 2002. Influences of organic and synthetic soil fertility amendments on nematode trophic groups and community dynamics under tomatoes. Appl. Soil Ecol. 21:233-250. https://doi.org/10.1016/S0929-1393(02)00089-6
  2. Bunemann, E.K., G.D. Schwenke, and L. Van Zwieten. 2006. Impact of agricultural inputs on soil organisms-a review. Aust. J. Soil Res. 44:379-406. https://doi.org/10.1071/SR05125
  3. Cobo, J.G., E. barrios, D.C.L. Kass. and R.J. Thomas. 2002. Decomposition and nutrient release by green manures in a tropical hillside agroecosystem. Plant Soil 240:331-342. https://doi.org/10.1023/A:1015720324392
  4. Coleman, D.C., D.A. Crossley, and P.F. Hendrix. 2004. Fundamentals of soil ecology, 2nd ed. Elsevier Academic Press, New York. USA, p.98-101.
  5. Filser, J. 2002. The role of collembolan in carbon and nitrogen cycling in soil. Pedobiologia 46:234-245.
  6. Heneghan, L., D.C. Coleman, X. Zou, D.A. Crossley, and B.L. Haines. 1999. Soil microarthropod contributions to decomposition dynamics: Tropical-temperature comparisons of a single substrate. Ecology 80:1873-1882.
  7. Kramer, C., and G. Gleixner. 2008. Soil organic mailer in soil depth profiles: Distinct carbon preferences of microbial groups during carbon transformation. Soil Biol. Biochem. 40:425-433. https://doi.org/10.1016/j.soilbio.2007.09.016
  8. Lee, G.S., S.S. Lee, and J.D. Chung. 2003. Effect of several kinds of composts on root yield of ginseng seedlings. J. Ginseng Res. 27:32-36. https://doi.org/10.5142/JGR.2003.27.1.032
  9. Lee, I.H., C.S. Park, Y.H. Yu, and C.S Yuk. 1985. Studies on soil management in ginseng preplanting soil (I) Changes of soil characteristics between pre-and post-management in the preplanting soil. Korean J. Ginseng Sci. 9:15-23.
  10. Li, W.H., C.B. Zhang, H.B. Jiang, G.R. Xin, and Z.Y. Yang. 2006. Changes in soil microbial community associated with invasion of the exotic weed, Mikania micrantha HBK. Plant Soil 281:309-324. https://doi.org/10.1007/s11104-005-9641-3
  11. Lindberg, N. and T.Persson. 2004. Effects of long-term nutrient fertilisation and irrigation on the microarthropod community in a boreal Norway spruce stand. Forest Ecol. Manag. 188:125-135. https://doi.org/10.1016/j.foreco.2003.07.012
  12. Mueller, B.R., M. Roth, and P. Rittner. 1993. Influence of compost and lime on population structure and element concentrations of forest soil invertebrates. Boil. Fert. Soils 15:165-173. https://doi.org/10.1007/BF00361606
  13. Nam, Y.K., J.I. Lee, and K.H. Han. 2002. Production of organic compost to exclusive use in a Ginseng. J. KOWREC. 10:139-147.
  14. National Institute of Agricultural Science and Technology (NIAST). 1988. Methods of soil and crop plant analysis. National Institute of Agricultural Science and Technology. Suwon, Korea.
  15. Nilsson, L.O., E. Baath, U. Falkengren-Grerup, and H. Wallander. 2007. Growth of ectomycorrhizal mycelia and composition of soil microbial communities in oak forest soils along a nitrogen deposition gradient. Oecologia 153:375-384. https://doi.org/10.1007/s00442-007-0735-x
  16. Opperman, M.H., M. Wood, P.J. Harris, and C.P. Cherrett. 1993. Nematode andnitrate dynamics in soils treated with cattle slurry. Soil Biol. Biochem. 25:19-24. https://doi.org/10.1016/0038-0717(93)90236-5
  17. Park, H., S.K. Mok, and K.S. Kim. 1982. Relationship between soil moisture, organic matter and plant growth in ginseng plantations. J. Korean Soc. Soil Sci. Fert. 15:156-161.
  18. Peacock, A.D., M.D. Mullen, D.B. Ringelberg, D.D. Tyler, D.B. Hedrick, P.M, Gale, and D.C. White. 2001. Soil microbial community responses to dairy manure or ammonium nitrate applications . Soil Biol. Biochem. 33:1011-1019. https://doi.org/10.1016/S0038-0717(01)00004-9
  19. Petersen, H., and M. Luxton. 1982. A comparative analysis of soil fauna populations and their role in decomposition processes. Oikos 39:287-388.
  20. Robertson, G.P., and D.W. Freckman. 1995. The spatial distribution of nematode trophic groups across a cultivated ecosystem. Ecology76:1425-1432. https://doi.org/10.2307/1938145
  21. Siepel, H., and F. Maaskamp. 1994. Mites of different feeding guilds affect decomposition of organic matter. Soil Biol. Biochem. 26:1389-1394. https://doi.org/10.1016/0038-0717(94)90222-4
  22. Verhoeven, R. 2001. Response of soil microfauna to organic fertilisationin sandy virgin soils of coastal dunes. Biol. Fertil. Soils 34:390-396. https://doi.org/10.1007/s00374-001-0422-8
  23. Verschoor, B.C., R.G.M. De Goede, F.W. De Vries, and L. Brussaard. 2001. Changes in the composition of the plant-feeding nematode community in grasslands after cessation of fertiliser application. Appl. Soil Ecol. 17:1-17. https://doi.org/10.1016/S0929-1393(00)00135-9
  24. Wong, J.W.C., K.M. Lai, M. Fang, and K.K. Ma. 1998. Effect of sewage sludge amendment on soil microbial activity and nutrient mineralization. Environ. Int. 24:935-943. https://doi.org/10.1016/S0160-4120(98)00075-0