Evaluation of Nutrient Discharges from Greenhouses with Flooding Soil Surface at Two Different Locations

입지조건이 다른 시설재배지에서 담수처리에 따른 양분 용탈량 평가

  • Kim, Min-Kyeong (Climate Change & Agroecology Division, Department of Agricultural Environment, National Academy of Agricultural Science, RDA) ;
  • Roh, Kee-An (Climate Change & Agroecology Division, Department of Agricultural Environment, National Academy of Agricultural Science, RDA) ;
  • Ko, Byong-Gu (Climate Change & Agroecology Division, Department of Agricultural Environment, National Academy of Agricultural Science, RDA) ;
  • Park, Seong-Jin (Climate Change & Agroecology Division, Department of Agricultural Environment, National Academy of Agricultural Science, RDA) ;
  • Jung, Goo-Bok (Climate Change & Agroecology Division, Department of Agricultural Environment, National Academy of Agricultural Science, RDA) ;
  • Lee, Deog-Bae (Climate Change & Agroecology Division, Department of Agricultural Environment, National Academy of Agricultural Science, RDA) ;
  • Kim, Chul-Soo (Dept. of Civil Engineering, College of Science & Engineering, Kyungpook National University)
  • 김민경 (국립농업과학원 농업환경부 기후변화생태과) ;
  • 노기안 (국립농업과학원 농업환경부 기후변화생태과) ;
  • 고병구 (국립농업과학원 농업환경부 기후변화생태과) ;
  • 박성진 (국립농업과학원 농업환경부 기후변화생태과) ;
  • 정구복 (국립농업과학원 농업환경부 기후변화생태과) ;
  • 이덕배 (국립농업과학원 농업환경부 기후변화생태과) ;
  • 김철수 (경북대학교 이공대학 토목공학과)
  • Received : 2010.03.30
  • Accepted : 2010.05.24
  • Published : 2010.06.30

Abstract

Greenhouse soil cultivated with excessive compost and chemical fertilizer has been an issue to deteriorate soil and water quality in the environment. The objective of this study was to evaluate the nutrient outflow by desalting method, flooding soil surface, after vegetable cropping in greenhouse soils. Field experiment from July to September 2008, was conducted to quantify greenhouse locations, i.e. alluvial plain and local valley. The changes of desalinization in both locations were higher as the amounts of irrigated and drained water were increased. Particularly, the ratio of desalinization in alluvial plain was much higher (66.7%) than the one in local valley (45.6%). However, $NH_4$-N contents of local valley soil during the flooding were higher than in those of alluvial plain. This was caused by high total nitrogen and organic matter in local valley soil than those in alluvial plain soil. With comparing to the input and output loads of T-N and T-P in greenhouses with local valley and alluvial plain soils, the output loads of nutrients were larger than the input loads of nutrients. This result showed that the flooding soil surface can be a good treatment to desalinize greenhouse soils. However, this conclusion remained that the flooding water containing high N and P concentrations might cause the secondary effect on the quality of streams and groundwater since excessive nutrient concentrations can be the main cause of eutrophication problem in aquatic environment.

시설재배는 폐쇄된 환경에서 제한적인 물관리로 인하여 작기 중에는 외부에 영향을 미치지 않으나, 작물 생산 이후 토양 중 집적된 염류를 제거하기 위해 담수처리를 하게 되는데, 이 때 토양 중 염류가 지표유출 및 용탈을 통하여 주변 수질에 영향을 직접 미치고 있어서 이에 대한 정량적인 평가를 하였다. 입지조건이 다른 두 시설재배지인 경북 상주시 서곡동에 위치한 시설하우스에서 2008년 7월 중순부터 9월 중순까지 시험 전 후의 토양 화학성, 관개량 및 관개수질, 침투수량 및 침투수질, 표면수질, 그리고 조사기간 동안 주변 하천 수질을 조사하였다. 하성평탄지에서는 담수직후의 제염률은 60.4%로 곡간지에 비해 훨씬 높았으며 76.6%까지 높아졌다가 담수 20일 후에는 66.7%이었다. 담수초기부터 곡간지의 표면수중 $NH_4$-N과 $PO_4$-P 농도가 하성평탄지보다 높았으며, 곡간지에서 담수직후와 담수종료 후의 토양깊이별 $Cl^-$${SO_4}^{2-}$ 농도는 큰 차이가 있었으나, 하성평탄지에서는 토양깊이별 ${SO_4}^{2-}$ 농도만 차이가 있었다. 침투수중 $NO_3$-N 농도 변화는 곡간지에 비해 하성평탄지에서 변화의 폭이 컸으며, 시간이 경과할수록 그리고 토양이 깊어질수록 그 농도도 높았다. 또한, 곡간지와 하성평탄지에 있는 시설재배지에서 담수제염에 의한 질소와 인수지를 비교 평가해 본 결과 곡간지와 하성평탄지 모두 유입 부하량보다 유출 부하량이 많아 외부 수계의 영향을 주는 것으로 평가되었다. 특히, 곡간지에 비해 하성평탄지에서의 양분 부하량이 더 많은 것으로 평가되었는데, 곡간지에서는 지하용탈만으로 제염을 하여 지하수의 수질에 영향을 주고 하성평탄지에서는 지하용탈뿐만 아니라 지표용탈에 의한 제염으로 인해 하천수의 수질에 영향을 주는 것으로 평가되었다.

Keywords

References

  1. 국립농업과학원. 2006. 작물별 시비처방기준. pp. 250.
  2. APHA-AWWA-WPCF. 1998. Standard methods for the examination of water and wastewater. 20th ed. Washington D.C.
  3. Ayers, R.S. and D.W. Wescot. 1985. Water quality for agriculture, FAO, Irrigation and drainage, pp. 29.
  4. Chung. J.B., B.J. Kim, J..K. Kim, and M.K. Kim. 1998. Water quality of streams in some agricultural areas of different agricultural practices along Nakdong river basin. Kor, J. Environ. Agic. 17:140-144.
  5. Di. H.J. and K.C. Cameron. 2002. Nitrate leaching in temperate agroecosystem : source, factors and mitigation strategies. Nutrient cycling in agro-ecosystems 46:237- 256.
  6. Ha, H.S. , M.S. Yang, H. Lee, Y.B. Lee, B.K. Sohn, and U.G. Kang. 1997. Soil chemical properties and plant mineral contents in plastic film house in southern part of Korea. Korean J. of Soil Sci. Fert. 30:272-279.
  7. Hong, S.G., N.H. Lee, W.J. Jun, H.C. Hwang, S.W. Nam, and Y.S. Yoon. 1998. Characteristics of soils under protected cultivation. The Korean Society of Agricultural Engineers. 40:88.95.
  8. Jung, B.G., J.W. Choi, E.S. Yun, J.H. Yoon, Y.H. Kim, and G.B. Jung. 1998. Chemical properties of the horticultural soils in the plastic film houses in Korea. Korean J. of Soil Sci. Fert.31:9-15.
  9. Jung, Y.S., J.E. Yang, Y.K. Joo, J.Y. Lee, Y.S. Park, M.H. Choi, and S.C. Choi. 1997. Water quality of streams and agricultural wells related to different agricultural practices in small catchments of Han river Basin. Kor, J. Environ. Agic. 16:199-20S.
  10. Kang, B.K., H.J. Kim, K.J. Lee, J.J. Kim, and S.D. Hong. 2001. Salt movement of soils by runoff in greenhouse area, Kor. J. of Environ. Agric. 20: 112-115.
  11. Ko, J.Y., J.S. Lee, M.T. Kim, C.S. Kim, U.G. Kang, and H.W. Kang. 2005. Effects of fanning practice and $NO_3$-N contents of groundwater with different locations under intensive greenhouse area. Kor. J. of Environ. Agric. 24:261-269. https://doi.org/10.5338/KJEA.2005.24.3.261
  12. Lee, Y.H., S.T. Lee, S.D. Lee, and Y.B. Kim. 2005. Chemical characteristics of soil and groundwater in plastic film house fields under fertilization system, Kor. J. of Environ. Agric. 24:326-333. https://doi.org/10.5338/KJEA.2005.24.4.326
  13. Ministry of Environment. 2003. Standard of water for agriculture, Ministry of Environment, Goacheon. Korea.
  14. Ministry of Environment. 2004. Korea standard methods for water quality. Ministry of Environment. Goacheon. Korea.
  15. National Institute of Agricultural Science and Technology. 2000. Methods of soil and plant analysis. National Institute of Agricultural Science and Technology. Rural Development Administration. Suwon. Korea.
  16. Nielson, D.R., J.W. Biggar, and P.J. Wierenga. 1982. Nitrogen transport process in soil. Am. Soc. Agron. 423-448.
  17. Park, D.K., J.K. Kwon, J.H. Lee, Y.H. Choi, and S.G. Lee. 2003. Effects of soil salinities on growth and fruit quality in oriental melon, J. Kor. Soc. Hort. Sci. 44:616-619.
  18. Suh, J.S., B.G. Jung, and J.S. Kwon. 1999. Soil microbial diversity of plastic film house fields in Korea. J. Korean Soc. Soil Sci. Fert. 31:197-203.
  19. Yun, S.G. and S.H. Yoo. 1993. Behavior of $NO_3$-N in soil and groundwater quality. Kor. J. Environ. Agric. 12:281-297.