Pig Manure Compost and Urea Application Effects on Chinese Cabbage in Different Soil Fertility

토양 비옥도가 상이한 조건에서 돈분 퇴비와 요소 비료의 배추에 대한 시비효과

  • Yun, Hong-Bae (National Academy of Agricultural Science, RDA) ;
  • Han, Seung-Gap (National Institute of Horticultural & Herbal Science, RDA) ;
  • Lee, Jong-Sik (National Academy of Agricultural Science, RDA) ;
  • Lee, Ye-Jin (National Academy of Agricultural Science, RDA) ;
  • Kim, Myung-Sook (National Academy of Agricultural Science, RDA) ;
  • Lee, Yong-Bok (Institute of Agriculture and Life Science, Gyeongsang National University)
  • 윤홍배 (농촌진흥청 국립농업과학원) ;
  • 한승갑 (국립원예특작과학원) ;
  • 이종식 (농촌진흥청 국립농업과학원) ;
  • 이예진 (농촌진흥청 국립농업과학원) ;
  • 김명숙 (농촌진흥청 국립농업과학원) ;
  • 이용복 (경상대학교 농업생명과학원)
  • Received : 2010.11.26
  • Accepted : 2010.12.22
  • Published : 2010.12.31

Abstract

The influences of the different mixture of urea fertilizer and pig manure compost as a nitrogen (N) source on Chinese cabbage yield, N uptake, and N agronomic efficiency (AE) were evaluated in two soils having different soil fertility levels. Increasing urea application level was very effective to improve yield and N uptake of Chinese cabbage, and the highest yield was obtained by urea fertilization alone in two soils. On the other hand, the lowest yield and N uptake was obtained from compost alone application in two soils. There was no significant difference in terms of the nitrogen AE between low and high fertility soils that were fully applied with urea. The AE values of Chinese cabbage applied by compost alone were significantly higher in the soil having a low fertility (28.8 g $g^{-1}$) than that in soil with high fertility (16.2 g $g^{-1}$), suggesting that N in compost was more responsive in improving the yield of Chinese cabbage in low fertility soils.

가축분퇴비 시용시 시비질소의 이용효율 증진 도모를 위한 기초자료를 얻고자 토양 비옥도가 다른 두 토양 (Soil-L와 Soil-H)에서 돈분 퇴비와 질소비료 (요소)의 혼용비율을 달리하여 포장조건에서 배추를 포트 재배시험을 실시하였다. 배추수량은 Soil-L에서는 시용질소를 전량 화학비료로 시비한 NPK 대비 돈분퇴비로 시용한 COM 100 처리구에서 17% 감소한 반면, 화학비료 질소와 퇴비를 혼용한 3처리 (COM 70+N30, COM50+N50 및 COM30+N70) 에서는 통계적 유의한 차이가 없었다. Soil-H에서는 NPK 대비 COM100 처리구에서 23.6%의 수량감소를 보였다. 배추의 질소흡수량은 두 토양 공히 NPK 처리구와 N70+COM30 처리구에서 가장 많았다. 시비 질소에 대한 배추의 생산효율은 두 토양 모두 화학비료의 시비량이 증가함에 따라 증가되었다. 그리고 화학비료를 전량 시비한 NPK 처리구에서 두 토양의 질소 생산효율은 큰 차이를 보이지 않았지만, 질소 시비량을 전량 퇴비로 시용한 COM 100 처리구에서는 Soil-L에서 28.8 g $g^{-1}$으로 Soil-H 16.2 g $g^{-1}$보다 현저히 높았다.

Keywords

References

  1. Azeez, J.O. and W. Van Averbeke. 2010. Nitrogen mineralization potential of three animal manure applied on a sandy clay loam soil. Bioresource Technology. 101: 5645-5651. https://doi.org/10.1016/j.biortech.2010.01.119
  2. Cassman, K.G., S. Peng, D.C. Olk, J.K. Ladha, W. Reichardt, A. Dobermann, and U. Singh. 1998. Opportunities for increased nitrogen-use efficiency from improved resource management in irrigated rice systems. Field Crops Res. 56:7-39. https://doi.org/10.1016/S0378-4290(97)00140-8
  3. Clark, M.S., W.R. Horwath, C. Shennan, and K.M. Scow. 1998. Changes in soil chemical properties resulting from organic and lowinput farming practices. Agron. J. 90:662-671. https://doi.org/10.2134/agronj1998.00021962009000050016x
  4. Craswell, E.T. and D.C. Godwin. 1984. The efficiency of nitrogen fertilizers applied to cereals in different climates. Adv. Plant. Nutr. 1:1-55.
  5. Delogu, G., L. Cattivelli, N. Pecchioni, D. Defalcis, T. Maggiore, and AM. Stanca. 1998. Uptake and agronomic efficiency of nitrogen in winter barley and winter wheat. Eur. J. Agron. 9:11-20. https://doi.org/10.1016/S1161-0301(98)00019-7
  6. Grandy, A.S., G.A. Porter, and M.S. Erich. 2002. Organic amendment and rotation crop effects on the recovery of soil organic matter and aggregation in potato cropping systems. Soil Sci. Soc. Am. J. 66:1311-1319. https://doi.org/10.2136/sssaj2002.1311
  7. Hwang, K.S., Q.S. Ho, H.D. Kim, and J.H. Choi. 2002. Changes of electrical conductivity and nitrate nitrogen in soil applied with livestock manure. Korean J. Environ. Agric. 21:197-201. https://doi.org/10.5338/KJEA.2002.21.3.197
  8. Jung, Y.G. and B.K. Park. 2000. Determination of the Guideline for application rate of Compost and Liquid Manure on Crops. Livestock Research Institute, RDA, Swon. p.139-164.
  9. Kim, J.G. and K.Y. Jung. 2000. Amount of Maximum Compost Application on the Long - term Application with Different Organic Material Sources in Upland Soil. Korean J. Soil Sci. Fert. 33:182-192.
  10. Kim, J.G., K.B. Lee, J.D. Kim, S.S. Han, and S.J. Kim. 2000. Change of nutrition loss of long-term application with different organic material sources in upland soil. Korean J. Soil Sci. Fert. 33:432-445.
  11. Kim, P.J., Y.B. Lee, Y. Lee, H.B. Yun, and K.D. Lee. 2008. Evaluation of livestock manure utilization rates as agricultural purpose in developed OECD countries by using nutrient balances. Korean J. of Environ. Agric. 27:337-342. https://doi.org/10.5338/KJEA.2008.27.4.337
  12. Lee, C.S., K.Y. Shin, J.T. Lee, and G.J. Lee. 2003. Determination of nitrogen application level for chinese cabbage with application of poultry manure compost in highland. Korean J. Soil Sci. Fert. 36:280-289.
  13. NIAST (National Institute Agricultural Science & Technology). 2000. The methods of soil and plant analysis. National Institute Agricultural Science and Technology. Suwon, Korea. p.103-146.
  14. NIAST (National Institute Agricultural Science & Technology). 2006. Fertilization standard on crops. National Institute Agricultural Science and Technology. Suwon, Korea. p.19-250.
  15. Novoa, R. and R.S. Loomis. 1981. Nitrogen and plant production. Plant and Soil. 58:177-204. https://doi.org/10.1007/BF02180053
  16. Park, C.G. 2000. Development of Technology for Livestock Manure use. Res. Rept. GyeongGi-Do National Agricultural Experiment Station. p.367-378.
  17. Park, C.S., J.H. Joo, W.J. Lee, K.Y. Lee, J.E. Yang, and Y.S. Ok. 2005. Nitrogen and Phosphorus Loss with Runoff and Leachate from Soils Applied with Different Agricultural By-product Composts. Korean J. Soil Sci. Fert. 38:307-312.
  18. Patra, D.D., M. Anwar, and S. Chand. 2000. Integrated nutrient management and waste recycling for restoring soil fertility and productivity in Japanese mint and mustard sequence in Uttra Pradesh, India Agric. Eco. Environ. 80:267-275. https://doi.org/10.1016/S0167-8809(00)00151-1
  19. Reganold, J.P. 1988. Comparison of soil properties as influenced by organic and conventional farming systems. Am. J. Alternative Agric. 3:144-155. https://doi.org/10.1017/S0889189300002423
  20. Schlegel, A.J. 1992. Effect of composted manure on soil chemical properties and nitrogen use by grain sorghum. J. Ptod. Agic. 5:153-157.
  21. Sharpley, A.N., S.J. Smith, B.A. Stewart, and A.C. Mathers. 1984. Forms of P in soil receving cattle feedlot waste. J. Environ. Qual. 13:211-215.
  22. Sikora, L.J. and N.K. Enkiri. 2000. Efficiency of compost- fertilizer blends compared with fertilizer alone. Soil Sci. 165:444-451. https://doi.org/10.1097/00010694-200005000-00009
  23. Sommerfeldt, T.G., C. Chang, and T. Entz. 1988. Longterm annual manure applications increase soil organic matter and nitrogen and decrease carbon to nitrogen ratio. Soil Sci. Soc. Am. J. 52:1668-1672. https://doi.org/10.2136/sssaj1988.03615995005200060030x
  24. Stamatiadis, S., M. Werner, and M. Buchanan. 1999. Field assessment of soil quality as affected by compost and fertilizer application in a brocoli field. Appl. Soil. Ecol. 12:217-225. https://doi.org/10.1016/S0929-1393(99)00013-X