DOI QR코드

DOI QR Code

Effect of Inoculation Concentration on Pathogenicity, Development, Propagation and Body Length of Entomopathogenic Nematode, Steinernema arenarium (Nematoda: Steinernematidae)

접종농도가 곤충병원성선충 Steinernema arenarium (Nematoda: Steinernematidae)의 병원성과 발육 증식 및 체장에 미치는 영향

  • Han, Gun-Yeong (Department of Applied Biology and Environmental Sciences, Division of Applied Life Science(BK21), Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Lee, Dong-Woon (Department of Applied Biology, Kyungpook National University) ;
  • Choo, Ho-Yul (Department of Applied Biology and Environmental Sciences, Division of Applied Life Science(BK21), Institute of Agriculture and Life Science, Gyeongsang National University)
  • 한건영 (경상대학교 응용생명과학부(BK21), 농업생명과학연구원, 응용생물환경학과) ;
  • 이동운 (경북대학교 생물응용학과) ;
  • 추호렬 (경상대학교 응용생명과학부(BK21), 농업생명과학연구원, 응용생물환경학과)
  • Received : 2010.01.20
  • Accepted : 2010.03.03
  • Published : 2010.03.30

Abstract

Effect of inoculation level on pathogenicity, development, and propagation of entomopathogenic nematode, Steinernema arenarium was investigated using the last instar of great wax moth, Galleria mellonella. Pathogenicity of S. arenarium was higher with increasing inoculation level representing 82% at the rate of 5 infective juveniles (IJs) while >98% at the rate of >10 IJs. The number of IJs penetrated into the host was 2.7, 5.0, 7.4, and 12.2 at the rate of 5, 10, 20, and 40 IJs, respectively while 24.3 at the rate of 80 IJs and 40.2 at the rate of 160 IJs. Inoculation level did not affect female adult size (4,616 to 6,444 ${\mu}m$) while affected male adult size (1,600 to 1,934 ${\mu}m$). The rate of stunted female adults was 70.2% at the inoculation level of 80 IJs and 63.7% at the inoculation level of 160 IJs. The number of progenies was 20,431, 26,696, 47,943, 50,516, 58,701, and 74,235 at the rate of 5, 10, 20, 40, 80, and 160 IJs, respectively. The body lengths of IJs were different depending on inoculation level ranging from 636 to 1,496 ${\mu}m$.

곤충병원성선충 Steinernema arenarium의 접종농도가 병원성, 발육, 증식 및 체장에 미치는 영향을 꿀벌부채명나방(Galleria mellonella) 노숙유충을 이용하여 조사하였다. 병원성은 S. arenarium의 접종농도를 증가시킬수록 높아졌는데, 5마리 접종농도에서는 82%의 치사율을 보였고, 10마리 이상의 접종농도에서는 98%이상의 치사율을 나타내었다. 기주체내에 정착한 선충수는 5, 10, 20, 40마리 접종농도에서는 각각 2.7, 5.0, 7.4, 12.2마리였으며 80마리와 160마리 접종농도에서는 24.3마리와 40.2마리였다. 접종농도는 암컷의 평균 체장(4,616 to 6,444 ${\mu}m$)에는 영향을 주지 않았으나 수컷의 체장(1,600 to 1,934 ${\mu}m$)에는 영향을 주었으며 왜화 암컷(stunted female)의 발생은 80마리와 160마리 접종농도에서 각각 70.2%와 63.7%로 높게 나타났다. 5, 10, 20, 40, 80, 160마리의 접종농도에서 증식수는 각각 20,431, 26,696, 47,943, 50,516, 58,701, 74,235마리였다 S. arenarium의 침입태 유충의 체장은 접종농도에 따라 차이를 보여 636~1,496 ${\mu}m$ 범위였다.

Keywords

References

  1. Adams, B.J. and K.B. Nguyen. 2002. Taxonomy and systematics, pp. 1-35. In ed. by R. Raugler. Entomopathogenic nematology. CABI Publishing, Oxon, UK.
  2. Akhurst, R.J. and N.E., Boemare. 1990. Biology and taxonomy of Xenorhabdus, pp. 75-90. In eds. by R. Gaugler and H.K. Kaya. Entomopathogenic nematodes in biological control. CRC Press, Boca Raton, USA.
  3. Artyukhovsky, A.K. 1967. Neoaplectana arenarium nov. sp. (Steinernematidae: Nematoda) inducing nematode disease in chafers of the Voronezh region. Trudy Voronezhskogo Gosudarstvennogo Zapovednika 15: 94-100.
  4. Artyukhovsky, A.K., E.M. Kozodoi, A.P. Reid and S.E. Spiridonov. 1997. Redescription of Steinernema arenarium (Artyukhovsky, 1967) topotypes from central Russia and a proposal for S. anomalae (Kozodoi, 1984) as a junior synonym. Russian J. Nematol. 5: 31-37.
  5. Brown, M. and R. Gaugler. 1996. Cold tolerance of steinernematid and heterohabditid nematodes. J. Therm. Biol. 21(2): 115-121. https://doi.org/10.1016/0306-4565(95)00033-X
  6. Chen, S., X. Han and M. Moens. 2003a. Biological of Delia radicum (Diptera: Anthomyiidae) with entomopathogenic nematodes. Appl. Entomol. Zool. 38(4): 441-448. https://doi.org/10.1303/aez.2003.441
  7. Chen, S., X. Han and M. Moens. 2003b. Effect of temperature on the pathogenicity of entomopathogenic nematodes (Steinernema and Heterorhabditis spp.) to Delia radicum. BioControl 48: 713-724. https://doi.org/10.1023/A:1026341325264
  8. Choo, H.Y., D.W. Lee, H.S. Yoon, S.M. Lee and D.T. Hang. 2002. Effects on temperature and nematode concentration on pathogenicity and reproduction of entomopathogenic nematode, Steinernema carpocapsae Pochen strain (Nematoda: Steinernematidae). Kor. J. Appl. Entomol. 41: 269-277.
  9. Ebssa, L., C. Borgemeister and H. -M. Poehling. 2004. Effectiveness of different species/strains of entomopathogenic nematodes for control of western flower thrips (Frankliniella occidentalis) at various concentrations, host densities and temperatures. Biol. Control 29: 145-154. https://doi.org/10.1016/S1049-9644(03)00132-4
  10. Forst, S., B. Dowds, N. Boemare and E. Stackebrandt. 1997. Xenorhabdus spp. and Photorhabdus spp.: bugs that kill bugs. Annu. Rev. Microbiol. 51: 22-47.
  11. Fujiie, A., M. Tachibana, Y. Takata, T. Yokoyama, N. Suzuki and T. Uechi. 1995. Effects of temperature on insecticidal activity of an entomopathogenic nematode, Steinernema kushidai (Nematoda: Steinernematidae), against Anomala cuprea (Coleoptera: Scarabaeidae) larvae. Appl. Entomol. Zool. 30: 23-30. https://doi.org/10.1303/aez.30.23
  12. Garcia del Pino F. and M. Jove. 2005. Compatibility of entomopathogenic nematodes with fipronil. J. Helminthol. 79(4): 333-337. https://doi.org/10.1079/JOH2005294
  13. Georgis, R. and N.G.M. Hague. 1981. A neoaplectanid nematode in the web-spinning larch sawfly Cephalcia lariciphila (Hymenoptera: Pamphiliidae). Ann. Appl. Biol. 99: 171-177. https://doi.org/10.1111/j.1744-7348.1981.tb05144.x
  14. Gouge, D.H. and N.G.M. Hague. 1995. The susceptibility of different species of sciarid files to entomopathegenic nematodes. J. Helminthol. 69: 313-318. https://doi.org/10.1017/S0022149X00014887
  15. Grewal., P.S., V. Converse and R. Georgis. 1999. Influence of production and bioassay methods on infectivity of two ambush foragers (Nematoda: Steinernematidae). J. Invertebr. Pathol. 73: 40-44. https://doi.org/10.1006/jipa.1998.4803
  16. Hang, D.T., H.Y. Choo, D.W. Lee, S.M. Lee, H.K. Kaya and C.G. Park. 2007. Temperature effects on Korean entomopathogenic nematodes, Steinernema glaseri and S. longicaudum and their symbiotic bacteria. J. Microbiol. Biotechnol. 17: 420-427.
  17. Hazir, S., S.P. Stock, H.K. Kaya, A.M. Koppenhofer and N. Keskin. 2001. Developmental temperature effects on five geographic isolates of the entomopathogenic nematode Steinernema feltiae (Nematoda: Steinernematidae). J. Invertebr. Pathol. 77: 243-250. https://doi.org/10.1006/jipa.2001.5029
  18. Kakouli-Duarte, T. and N.G.M. Hague. 1999. Infection, development, and reproduction of the entomopathogenic nematode Steinernema arenarium (Nematoda: Steinernematidae) in the black vine weevil Otiorhynchus sulcatus (Coleoptera: Curculionidae). Nematology. 1: 149-156. https://doi.org/10.1163/156854199508117
  19. Kaya, H.K. and R. Gaugler. 1993. Entomopathogenic nematodes. Annu. Rev. Entomol. 38: 181-206. https://doi.org/10.1146/annurev.en.38.010193.001145
  20. Kim, H.H., G.Y. Han, H.Y. Choo, S.M. Lee and D.W. Lee. 2007. Pathogenicity of entomopathogenic nematode, Steinernema carpocapsae GSN1 strain (Rhabditida: Steinernematidae) against Tebenna issikii (Lepidoptera: Choreutidae). Kor. J. Appl. Entomol. 46: 313-318. https://doi.org/10.5656/KSAE.2007.46.2.313
  21. Kozodoi, E.M. 1984. A new entomopathogenic nematode Neoaplectana anomali sp. n. (Rhabditida: Steinernematidae) and observation on its biology. Zool. J. 63: 1605-1612.
  22. Kuhlmann, U. and W.A.C.M. van der Burgt. 1998. Possibilities for biological control of the western com rootworm, Diabrotica virgifera virgifera LeConte, in central Europe. BioControl 19(2): 59-68.
  23. Lacey, L.A., R. Bettencourt, F.J. Garrett, N.J. Simoes and R.H. Gaugler. 1993. Factors influencing parasitism of adult Japanese beetle, Popillia japonica (Col: Scarabaeidae) by entomopathogenic nematodes. Entomophaga 38: 501-509. https://doi.org/10.1007/BF02373084
  24. Lewis, E.E., J.F. Campbell and R. Gaugler. 1997. The effect of aging on the foraging behaviour of Steinernema carpocapsae (Rhabdita: Steinernematidae). Nematologica 43: 1-8. https://doi.org/10.1163/004725997X00016
  25. Mason, J.M. and W.M. Hominick. 1995. The effect of temperature on infection, development and reproduction of Heterorhabditis. J. Helminthol. 69: 337-345. https://doi.org/10.1017/S0022149X00014929
  26. Nguyen, K.B., D.J. Hunt and Z. Mracek. 2007. Steinernematidae: species descriptions, pp. 121-609. In eds. by KB. Nguyen and D.J. Hunt. Entomopathogenic nematodes: systematics, phylogeny and bacterial symbionts. Brili, Leiden, The Netherlands.
  27. Poinar, G.O.Jr. 1972. Nematodes as facultative parasites of insects. Annu. Rev. Entomol. 17: 103-122. https://doi.org/10.1146/annurev.en.17.010172.000535
  28. Poinar, G.O.Jr. 1990. Taxonomy and biology of Steinernematidae and Heterorhabditidae. Entomopathogenic nematodes in biological control. Boca Raton. FL. USA. CRC Press. pp. 22-61.
  29. Poinar, G.O.Jr. and E.M. Kozodoi. 1988. Neoaplectana glaseri and N anomali: sibling species or parallelism? Revue Nematol. 11: 13-19.
  30. SAS Institute. 1999. SAS 8 for Windows. Cary. NC.
  31. Schirocki, A.C. and N.G.M. Hague. 1997. The effect of selective culture of Steinernema feltiae at low temperature on establishment, pathogenicity, reproduction and size of infective juveniles. Nematologica 43: 481-490. https://doi.org/10.1163/005125997X00075
  32. Selvan, S., J. F. Campbell and R. Gaugler. 1993. Density-depended effects on entomopathogenic nematodes (Heterorhabditidae and Steinernematidae) within an insect host. J. Invertebr. Pathol. 62: 278-284. https://doi.org/10.1006/jipa.1993.1113
  33. Westerman, P.R. 1999. Aggregation of entomopathogenic nematodes, Heterorhabditis spp. and Steinernema spp., among host insect at 9 and $20^{\circ}C$ and effects on efficacy. J. Invertebr. Pathol. 60: 148-151.
  34. White, G.F. 1927. A method for obtaining infective nematode larvae from cultures. Science 66: 302-303.
  35. Woodring, J.L. and H.K. Kaya. 1988. Steinernematidae and Heterorhabditidae nematodes: a handbook of techniques. Southern Coop. Ser. Bull. 331, Alkansas Agri. Exp. Stn. Fayetteville, AR. 29pp.
  36. Wouts, W.M. 1979. The biology and life cycle of a New Zealand population of Heterorhabditis heliothidis (Heterorhabditidae). Nematologica 25: 191-202. https://doi.org/10.1163/187529279X00226
  37. Yeh, T. and S.R. Alm. 1992. Effect of entomopathogenic nematode species, rate, soil moisture, and bacteria on control of Japanese beetle (Coleoptera: Scarabaeidae) larvae in the laboratory. J. Econ. Entomol. 85: 2144-2148. https://doi.org/10.1093/jee/85.6.2144

Cited by

  1. Effect of Harvest Time and Infective Juvenile Size of the Entomopathogenic Nematode, Steinernema arenarium, on Pathogenicity, Development, and Propagation vol.51, pp.1, 2012, https://doi.org/10.5656/KSAE.2012.01.1.058