References
- Aldor, I. and J. Keasling. 2003. Process design for microbial plastic factories: Metabolic engineering of polyhydroxyalkanoates. Curr. Opin. Biotech. 14: 475-483. https://doi.org/10.1016/j.copbio.2003.09.002
- Alias, Z. and I. K. Tan. 2005. Isolation of palm oil-utilising, polyhydroxyalkanoate (PHA)-producing bacteria by an enrichment technique. Bioresource Technol. 96: 1229-1234. https://doi.org/10.1016/j.biortech.2004.10.012
- Arjona, R., P. Ollero, and F. Vidal. 2005. Automation of an olive waste industrial rotary dryer. J. Food Eng. 68: 239-247. https://doi.org/10.1016/j.jfoodeng.2004.05.049
- Beccari, M., F. Bonemazzi, M. Majone, and C. Riccardi. 1996. Interaction between acidogenesis and methanogenesis in the anaerobic treatment of olive oil mill effluents Water Res. 30: 183-189. https://doi.org/10.1016/0043-1354(95)00086-Z
- Borja, R., B. Rincon, F. Raposo, J. Alba, and A. Martin. 2003. Kinetics of mesophilic anaerobic digestion of the two-phase olive mill solid waste. Biochem. Eng. J. 15: 139-145. https://doi.org/10.1016/S1369-703X(02)00194-8
-
Byrom, D. 1992. Production of poly-
$\beta$ -hydroxybutyrate: Poly-$\beta$ -hydroxyvalerate copolymers. FEMS Microbiol. Rev. 103: 247-250. - Cayuela, M. L., M. P. Bernal, and A. Roig. 2004. Composting olive mill wastes and sheep manure for orchard use. Compost Sci. Utiliz. 12: 130-136.
- Chen, G. Q., G. Zhang, S. J. Park, and S. Lee. 2001. Industrial production of poly (hydroxyl-butyrate-co-hydroxyhexanoate). Appl. Microbiol. Biotechnol. 57: 50-55. https://doi.org/10.1007/s002530100755
- Choi, J. and S. Y. Lee. 1997. Process analysis and economic evaluation for poly(3-hydroxybutyrate) production by fermentation. Bioprocess Eng. 17: 335-342. https://doi.org/10.1007/s004490050394
- De Villiers, A., F. Lynen, A. Crouch, and P. Sandra. 2004. Development of a solid-phase extraction procedure for the simultaneous determination of polyphenols, organic acids and sugars in wine. Chromatographia 59: 403-409.
- Dionisi, D., M. Majone, V. Papa, and M. Beccari. 2004. Biodegradable polymers from organic acids by using activated sludge enriched by aerobic periodic feeding. Biotechnol. Bioeng. 85: 569-579. https://doi.org/10.1002/bit.10910
- Dionisi, D., G. Carucci, M. Petrangeli Papini, C. Riccardi, M. Majone, and F. Carrasco. 2005. Olive oil mill effluents as a feedstock for production of biodegradable polymers. Water Res. 39: 2076-2084. https://doi.org/10.1016/j.watres.2005.03.011
- Fezzani, B. and R. Ben Cheikh. 2008. Optimisation of the mesophilic anaerobic co-digestion of olive mill wastewater with olive mill solid waste in a batch digester. Desalination 228: 159-167. https://doi.org/10.1016/j.desal.2007.09.007
- Fiorelli, F., L. Passetti, and E. Galli. 1996. Fertility-promoting metabolites produced by Azotobacter vinelandii grown on olivemill wastewaters. Int. Biodeter. Biodegrad. 34: 165-167.
- Fukui, T. and Y. Doi. 1998. Efficient production of polyhydroxyalkanoates from plant oils by Alcaligenes eutrophus and its recombinant strain. Appl. Microbiol. Biotechnol. 49: 333-336. https://doi.org/10.1007/s002530051178
- Gonzalez-Lopez, J., C. Pozo, M. V. Martinez-Toledo, B. Rodelas, and V. Salmeron. 1996. Production of polyhydroxyalkanoates by Azotobacter chroococcum H23 in wastewater from olive oil mills (alpechin). Int. Biodeter. Biodegred. 38: 271-276. https://doi.org/10.1016/S0964-8305(96)00060-1
- Hahn, S. K., Y. K. Chang, and S. Y. Lee. 1995. Recovery and characterization of poly(3-hydroxybutyric acid) synthesized in Alcaligenes eutrophus and recombinant Escherichia coli. Appl. Environ. Microbiol. 61: 34-39.
- Jones, C. E., P. J. Murphy, and N. J. Russell. 2000. Diversity and osmoregulatory responses of bacteria isolated from twophase olive oil extraction waste products. World J. Microbiol. Biotechnol. 16: 555-561. https://doi.org/10.1023/A:1008991118111
- Kissi, M., M. Mountadar, O. Assobhei, E. Gargiulo, G. Palmieri, and P. Giardina. 2001. Roles of two white-rot basidiomycete fungi in decolorisation and detoxification of olive mill waste water. Appl. Microbiol. Biotechnol. 57: 221-226. https://doi.org/10.1007/s002530100712
- Lopez, M. J. and A. Ramos-Cormenzana. 1996. Xanthan production from olive-mill wastewaters. Int. Biodeter. Biodegrad. 38: 263-270. https://doi.org/10.1016/S0964-8305(96)00059-5
- Martinez, D., M. J. Cugat, F. Borrull, and M. Calull. 2000. Solidphase extraction coupling to capillary electrophoresis with emphasis on environmental analysis - Review. J. Chromatogr. A 902: 65-89. https://doi.org/10.1016/S0021-9673(00)00839-6
- Martinez-Toledo, M. V., J. Gonzalez-Lopez, T. de la Rubia, and A. Ramos-Cormenzana. 1985. Isolation and characterization of Azotobacter chroococcum from the roots of Zea mays. FEMS Microbiol. Ecol. 31: 197-203. https://doi.org/10.1111/j.1574-6968.1985.tb01149.x
-
Martinez-Toledo, M. V., J. Gonzalez-Lopez, B. Rodelas, C. Pozo, and V. Salmeron. 1995. Production of poly-
$\beta$ -hydroxybutyrate by Azotobacter chroococcum H23 in chemically-defined medium and alpechin medium. J. Appl. Bacteriol. 78: 413-418. https://doi.org/10.1111/j.1365-2672.1995.tb03427.x - Oelze, J. 2000. Respiratory protection of nitrogenase in Azotobacter species: Is a widely held hypothesis unequivocally supported by experimental evidence? FEMS Microbiol. Rev. 24: 321-333. https://doi.org/10.1111/j.1574-6976.2000.tb00545.x
- Page, W. J. and O. Knosp. 1989. Hyperproduction of poly-3-hydroxybutyrate during exponential growth of Azotobacter vinelandii UWD. Appl. Environ. Microbiol. 5: 1334-1339.
- Page, W. J., J. Manchak, and B. Rudy. 1992. Formation of poly(hydroxybutyrate-co-hydroxyvalerate) by Azotobacter vinelandii UWD. Appl. Environ. Microbiol. 58: 2866-2873.
- Page, W. J., N. Bhanthumnarvim, J. Manchak, and M. Ruman. 1997. Production of poly-(beta-hydroxybutyrate-beta-hydroxyvalerate) copolymer from sugars by Azotobacter salinestris. Appl. Microbiol. Biotechnol. 48: 88-93. https://doi.org/10.1007/s002530051020
- Pal, S., A. Manna, and A. K. Paul. 1998. Nutritional and cultural conditions for production of poly-3-hydroxybutyric acid by Azotobacter chroococcum. Folia Microbiol. 43: 177-181. https://doi.org/10.1007/BF02816506
- Patel, M., D. J. Gapes, R. H. Newman, and P. H. Dare. 2009. Physico-chemical properties of polyhydroxyalkanoate produced by mixed-culture nitrogen-fixing bacteria. Appl. Microbiol. Biotechnol. 82: 545-555. https://doi.org/10.1007/s00253-008-1836-0
- Poirier, Y., C. Nawrath, and C. Somerville. 1995. Production of polyhydroxyalkanoates, a family of biodegradable plastics and elastomers, in bacteria and plants. Rev. Biotechnol. 13: 142-150. https://doi.org/10.1038/nbt0295-142
- Pozo, C., M. V. Martinez-Toledo, B. Rodelas, and J. Gonzalez-Lopez. 2002. Effects of culture conditions on the production of polyhydroxyalkanoates by Azotobacter chroococcum H23 in media containing a high concentration of alpechin (wastewater from olive oil mills) as primary carbon sources. J. Biotechnol. 97: 125-131. https://doi.org/10.1016/S0168-1656(02)00056-1
- Reddy, C. S., R. Ghai, and V. C. Rashmi Khalia. 2003. Polyhydroxyalkanoates: An overview. Bioresource Technol. 87: 137-146. https://doi.org/10.1016/S0960-8524(02)00212-2
- Rincon, B., R. Borja, J. M. Gonzalez, M. C. Portillo, and C. Saiz-Jimenez. 2008. Influence of organic loading rate and hydraulic retention time on the performance, stability and microbial communities of one-stage anaerobic digestion of twophase olive mill solid residue. Biochem. Eng. J. 40: 253-261. https://doi.org/10.1016/j.bej.2007.12.019
- Scioli, C. and L. Vollaro. 1997. The use of Yarrowia lipolytica to reduce pollution in olive mill wastewaters. Water Res. 31: 2520-2524. https://doi.org/10.1016/S0043-1354(97)00083-3
- Sook, O. J., M. W. Choi, and S. C. Yoon. 2005. In vivo 13CNMR spectroscopic study of polyhydroxyalkanoic acid degradation kinetics in bacteria. J. Microbiol. Biotechnol. 15: 1330-1336.
- Steinbuchel, A. and B. Fuchtenbusch. 1998. Bacteria and other biological systems for polyester production. TIBTECH, 16: 419-427. https://doi.org/10.1016/S0167-7799(98)01194-9
- Thakor, N., U. Trivedi, and K. C. Patel. 2005. Biosynthesis of medium chain length poly(3-hydroxyalkanoates) (mcl-PHAs) by Comamonas testosterone during cultivation on vegetable oils. Bioresource Technol. 96: 1843-1850. https://doi.org/10.1016/j.biortech.2005.01.030
- Thompson, R. B. and R. Nogales. 1999. Nitrogen and carbon mineralization in soil of vermi-composted and unprocessed dry olive cake ("orujo seco") produced from two-stage centrifugation for olive oil extraction. J. Environ. Sci. Health B 34: 917-928. https://doi.org/10.1080/03601239909373235
- Tsuge, T. 2002. Metabolic improvements and use of inexpensive carbon sources in microbial production of polyhydroxyalkanoates. J. Biosci. Bioeng. 94: 579-584.
- Wilson, P. W. and S. C. Knight. 1952. Experiments in Bacterial-Physiology. Burges Publishing Co., Minneapolis.
- Yan, Y., Q. Wu, and R. Zhang. 2000. Dynamic accumulation and degradation of poly(3-hydroxyalkanoate)s in living cells of Azotobacter vinelandii UWD characterized by 13C NMR. FEMS Microbiol. Lett. 193: 269-273. https://doi.org/10.1111/j.1574-6968.2000.tb09435.x
- Yu, J. 2001. Production of PHA from starchy wastewater via organic acids. J. Biotechnol. 86: 105-112. https://doi.org/10.1016/S0168-1656(00)00405-3
Cited by
- Detection of Polyhydroxyalkanoate-Accumulating Bacteria from Domestic Wastewater Treatment Plant Using Highly Sensitive PCR Primers vol.22, pp.8, 2010, https://doi.org/10.4014/jmb.1111.11040
- Medium chain length polyhydroxyalkanoate (mcl-PHA) production from volatile fatty acids derived from the anaerobic digestion of grass vol.98, pp.2, 2010, https://doi.org/10.1007/s00253-013-5323-x
- Softwood hydrolysate as a carbon source for?polyhydroxyalkanoate production vol.89, pp.7, 2014, https://doi.org/10.1002/jctb.4196
- Pseudomonas pseudoalcaligenes CECT5344, a cyanide-degrading bacterium with by-product (polyhydroxyalkanoates) formation capacity vol.14, pp.None, 2010, https://doi.org/10.1186/s12934-015-0267-8
- NITROGEN SOURCES ON TPOMW VALORIZATION THROUGH SOLID STATE FERMENTATION PERFORMED BY Yarrowia lipolytica vol.33, pp.2, 2010, https://doi.org/10.1590/0104-6632.20160332s20150146
- Azotobacter vinelandii: the source of 100 years of discoveries and many more to come vol.164, pp.4, 2010, https://doi.org/10.1099/mic.0.000643
- The Modification of Regulatory Circuits Involved in the Control of Polyhydroxyalkanoates Metabolism to Improve Their Production vol.8, pp.None, 2020, https://doi.org/10.3389/fbioe.2020.00386