DOI QR코드

DOI QR Code

Biological Treatment of Two-Phase Olive Mill Wastewater (TPOMW, alpeorujo): Polyhydroxyalkanoates (PHAs) Production by Azotobacter Strains

  • Cerrone, Federico (Group of Environmental Microbiology, Institute of Water Research, University of Granada) ;
  • Sanchez-Peinado, Maria Del Mar (Group of Environmental Microbiology, Institute of Water Research, University of Granada) ;
  • Juarez-Jimenez, Belen (Group of Environmental Microbiology, Institute of Water Research, University of Granada) ;
  • Gonzalez-Lopez, Jesus (Group of Environmental Microbiology, Institute of Water Research, University of Granada) ;
  • Pozo, Clementina (Group of Environmental Microbiology, Institute of Water Research, University of Granada)
  • Received : 2009.06.18
  • Accepted : 2009.10.20
  • Published : 2010.03.31

Abstract

Azotobacter chroococcum H23 (CECT 4435), Azotobacter vinelandii UWD, and Azotobacter vinelandii (ATCC 12837), members of the family Pseudomonadaceae, were used to evaluate their capacity to grow and accumulate polyhydroxyalkanoates (PHAs) using two-phase olive mill wastewater (TPOMW, alpeorujo) diluted at different concentrations as the sole carbon source. The PHAs amounts (g/l) increased clearly when the TPOMW samples were previously digested under anaerobic conditions. The MNR analysis demonstrated that the bacterial strains formed only homopolymers containing $\beta$-hydroxybutyrate, either when grown in diluted TPOMW medium or diluted anaerobically digested TPOMW medium. COD values of the diluted anaerobically digested waste were measured before and after the aerobic PHA-storing phase, and a clear reduction (72%) was recorded after 72 h of incubation. The results obtained in this study suggest the perspectives for using these bacterial strains to produce PHAs from TPOMW, and in parallel, contribute efficiently to the bioremediation of this waste. This fact seems essential if bioplastics are to become competitive products.

Keywords

References

  1. Aldor, I. and J. Keasling. 2003. Process design for microbial plastic factories: Metabolic engineering of polyhydroxyalkanoates. Curr. Opin. Biotech. 14: 475-483. https://doi.org/10.1016/j.copbio.2003.09.002
  2. Alias, Z. and I. K. Tan. 2005. Isolation of palm oil-utilising, polyhydroxyalkanoate (PHA)-producing bacteria by an enrichment technique. Bioresource Technol. 96: 1229-1234. https://doi.org/10.1016/j.biortech.2004.10.012
  3. Arjona, R., P. Ollero, and F. Vidal. 2005. Automation of an olive waste industrial rotary dryer. J. Food Eng. 68: 239-247. https://doi.org/10.1016/j.jfoodeng.2004.05.049
  4. Beccari, M., F. Bonemazzi, M. Majone, and C. Riccardi. 1996. Interaction between acidogenesis and methanogenesis in the anaerobic treatment of olive oil mill effluents Water Res. 30: 183-189. https://doi.org/10.1016/0043-1354(95)00086-Z
  5. Borja, R., B. Rincon, F. Raposo, J. Alba, and A. Martin. 2003. Kinetics of mesophilic anaerobic digestion of the two-phase olive mill solid waste. Biochem. Eng. J. 15: 139-145. https://doi.org/10.1016/S1369-703X(02)00194-8
  6. Byrom, D. 1992. Production of poly-$\beta$-hydroxybutyrate: Poly-$\beta$-hydroxyvalerate copolymers. FEMS Microbiol. Rev. 103: 247-250.
  7. Cayuela, M. L., M. P. Bernal, and A. Roig. 2004. Composting olive mill wastes and sheep manure for orchard use. Compost Sci. Utiliz. 12: 130-136.
  8. Chen, G. Q., G. Zhang, S. J. Park, and S. Lee. 2001. Industrial production of poly (hydroxyl-butyrate-co-hydroxyhexanoate). Appl. Microbiol. Biotechnol. 57: 50-55. https://doi.org/10.1007/s002530100755
  9. Choi, J. and S. Y. Lee. 1997. Process analysis and economic evaluation for poly(3-hydroxybutyrate) production by fermentation. Bioprocess Eng. 17: 335-342. https://doi.org/10.1007/s004490050394
  10. De Villiers, A., F. Lynen, A. Crouch, and P. Sandra. 2004. Development of a solid-phase extraction procedure for the simultaneous determination of polyphenols, organic acids and sugars in wine. Chromatographia 59: 403-409.
  11. Dionisi, D., M. Majone, V. Papa, and M. Beccari. 2004. Biodegradable polymers from organic acids by using activated sludge enriched by aerobic periodic feeding. Biotechnol. Bioeng. 85: 569-579. https://doi.org/10.1002/bit.10910
  12. Dionisi, D., G. Carucci, M. Petrangeli Papini, C. Riccardi, M. Majone, and F. Carrasco. 2005. Olive oil mill effluents as a feedstock for production of biodegradable polymers. Water Res. 39: 2076-2084. https://doi.org/10.1016/j.watres.2005.03.011
  13. Fezzani, B. and R. Ben Cheikh. 2008. Optimisation of the mesophilic anaerobic co-digestion of olive mill wastewater with olive mill solid waste in a batch digester. Desalination 228: 159-167. https://doi.org/10.1016/j.desal.2007.09.007
  14. Fiorelli, F., L. Passetti, and E. Galli. 1996. Fertility-promoting metabolites produced by Azotobacter vinelandii grown on olivemill wastewaters. Int. Biodeter. Biodegrad. 34: 165-167.
  15. Fukui, T. and Y. Doi. 1998. Efficient production of polyhydroxyalkanoates from plant oils by Alcaligenes eutrophus and its recombinant strain. Appl. Microbiol. Biotechnol. 49: 333-336. https://doi.org/10.1007/s002530051178
  16. Gonzalez-Lopez, J., C. Pozo, M. V. Martinez-Toledo, B. Rodelas, and V. Salmeron. 1996. Production of polyhydroxyalkanoates by Azotobacter chroococcum H23 in wastewater from olive oil mills (alpechin). Int. Biodeter. Biodegred. 38: 271-276. https://doi.org/10.1016/S0964-8305(96)00060-1
  17. Hahn, S. K., Y. K. Chang, and S. Y. Lee. 1995. Recovery and characterization of poly(3-hydroxybutyric acid) synthesized in Alcaligenes eutrophus and recombinant Escherichia coli. Appl. Environ. Microbiol. 61: 34-39.
  18. Jones, C. E., P. J. Murphy, and N. J. Russell. 2000. Diversity and osmoregulatory responses of bacteria isolated from twophase olive oil extraction waste products. World J. Microbiol. Biotechnol. 16: 555-561. https://doi.org/10.1023/A:1008991118111
  19. Kissi, M., M. Mountadar, O. Assobhei, E. Gargiulo, G. Palmieri, and P. Giardina. 2001. Roles of two white-rot basidiomycete fungi in decolorisation and detoxification of olive mill waste water. Appl. Microbiol. Biotechnol. 57: 221-226. https://doi.org/10.1007/s002530100712
  20. Lopez, M. J. and A. Ramos-Cormenzana. 1996. Xanthan production from olive-mill wastewaters. Int. Biodeter. Biodegrad. 38: 263-270. https://doi.org/10.1016/S0964-8305(96)00059-5
  21. Martinez, D., M. J. Cugat, F. Borrull, and M. Calull. 2000. Solidphase extraction coupling to capillary electrophoresis with emphasis on environmental analysis - Review. J. Chromatogr. A 902: 65-89. https://doi.org/10.1016/S0021-9673(00)00839-6
  22. Martinez-Toledo, M. V., J. Gonzalez-Lopez, T. de la Rubia, and A. Ramos-Cormenzana. 1985. Isolation and characterization of Azotobacter chroococcum from the roots of Zea mays. FEMS Microbiol. Ecol. 31: 197-203. https://doi.org/10.1111/j.1574-6968.1985.tb01149.x
  23. Martinez-Toledo, M. V., J. Gonzalez-Lopez, B. Rodelas, C. Pozo, and V. Salmeron. 1995. Production of poly-$\beta$-hydroxybutyrate by Azotobacter chroococcum H23 in chemically-defined medium and alpechin medium. J. Appl. Bacteriol. 78: 413-418. https://doi.org/10.1111/j.1365-2672.1995.tb03427.x
  24. Oelze, J. 2000. Respiratory protection of nitrogenase in Azotobacter species: Is a widely held hypothesis unequivocally supported by experimental evidence? FEMS Microbiol. Rev. 24: 321-333. https://doi.org/10.1111/j.1574-6976.2000.tb00545.x
  25. Page, W. J. and O. Knosp. 1989. Hyperproduction of poly-3-hydroxybutyrate during exponential growth of Azotobacter vinelandii UWD. Appl. Environ. Microbiol. 5: 1334-1339.
  26. Page, W. J., J. Manchak, and B. Rudy. 1992. Formation of poly(hydroxybutyrate-co-hydroxyvalerate) by Azotobacter vinelandii UWD. Appl. Environ. Microbiol. 58: 2866-2873.
  27. Page, W. J., N. Bhanthumnarvim, J. Manchak, and M. Ruman. 1997. Production of poly-(beta-hydroxybutyrate-beta-hydroxyvalerate) copolymer from sugars by Azotobacter salinestris. Appl. Microbiol. Biotechnol. 48: 88-93. https://doi.org/10.1007/s002530051020
  28. Pal, S., A. Manna, and A. K. Paul. 1998. Nutritional and cultural conditions for production of poly-3-hydroxybutyric acid by Azotobacter chroococcum. Folia Microbiol. 43: 177-181. https://doi.org/10.1007/BF02816506
  29. Patel, M., D. J. Gapes, R. H. Newman, and P. H. Dare. 2009. Physico-chemical properties of polyhydroxyalkanoate produced by mixed-culture nitrogen-fixing bacteria. Appl. Microbiol. Biotechnol. 82: 545-555. https://doi.org/10.1007/s00253-008-1836-0
  30. Poirier, Y., C. Nawrath, and C. Somerville. 1995. Production of polyhydroxyalkanoates, a family of biodegradable plastics and elastomers, in bacteria and plants. Rev. Biotechnol. 13: 142-150. https://doi.org/10.1038/nbt0295-142
  31. Pozo, C., M. V. Martinez-Toledo, B. Rodelas, and J. Gonzalez-Lopez. 2002. Effects of culture conditions on the production of polyhydroxyalkanoates by Azotobacter chroococcum H23 in media containing a high concentration of alpechin (wastewater from olive oil mills) as primary carbon sources. J. Biotechnol. 97: 125-131. https://doi.org/10.1016/S0168-1656(02)00056-1
  32. Reddy, C. S., R. Ghai, and V. C. Rashmi Khalia. 2003. Polyhydroxyalkanoates: An overview. Bioresource Technol. 87: 137-146. https://doi.org/10.1016/S0960-8524(02)00212-2
  33. Rincon, B., R. Borja, J. M. Gonzalez, M. C. Portillo, and C. Saiz-Jimenez. 2008. Influence of organic loading rate and hydraulic retention time on the performance, stability and microbial communities of one-stage anaerobic digestion of twophase olive mill solid residue. Biochem. Eng. J. 40: 253-261. https://doi.org/10.1016/j.bej.2007.12.019
  34. Scioli, C. and L. Vollaro. 1997. The use of Yarrowia lipolytica to reduce pollution in olive mill wastewaters. Water Res. 31: 2520-2524. https://doi.org/10.1016/S0043-1354(97)00083-3
  35. Sook, O. J., M. W. Choi, and S. C. Yoon. 2005. In vivo 13CNMR spectroscopic study of polyhydroxyalkanoic acid degradation kinetics in bacteria. J. Microbiol. Biotechnol. 15: 1330-1336.
  36. Steinbuchel, A. and B. Fuchtenbusch. 1998. Bacteria and other biological systems for polyester production. TIBTECH, 16: 419-427. https://doi.org/10.1016/S0167-7799(98)01194-9
  37. Thakor, N., U. Trivedi, and K. C. Patel. 2005. Biosynthesis of medium chain length poly(3-hydroxyalkanoates) (mcl-PHAs) by Comamonas testosterone during cultivation on vegetable oils. Bioresource Technol. 96: 1843-1850. https://doi.org/10.1016/j.biortech.2005.01.030
  38. Thompson, R. B. and R. Nogales. 1999. Nitrogen and carbon mineralization in soil of vermi-composted and unprocessed dry olive cake ("orujo seco") produced from two-stage centrifugation for olive oil extraction. J. Environ. Sci. Health B 34: 917-928. https://doi.org/10.1080/03601239909373235
  39. Tsuge, T. 2002. Metabolic improvements and use of inexpensive carbon sources in microbial production of polyhydroxyalkanoates. J. Biosci. Bioeng. 94: 579-584.
  40. Wilson, P. W. and S. C. Knight. 1952. Experiments in Bacterial-Physiology. Burges Publishing Co., Minneapolis.
  41. Yan, Y., Q. Wu, and R. Zhang. 2000. Dynamic accumulation and degradation of poly(3-hydroxyalkanoate)s in living cells of Azotobacter vinelandii UWD characterized by 13C NMR. FEMS Microbiol. Lett. 193: 269-273. https://doi.org/10.1111/j.1574-6968.2000.tb09435.x
  42. Yu, J. 2001. Production of PHA from starchy wastewater via organic acids. J. Biotechnol. 86: 105-112. https://doi.org/10.1016/S0168-1656(00)00405-3

Cited by

  1. Detection of Polyhydroxyalkanoate-Accumulating Bacteria from Domestic Wastewater Treatment Plant Using Highly Sensitive PCR Primers vol.22, pp.8, 2010, https://doi.org/10.4014/jmb.1111.11040
  2. Medium chain length polyhydroxyalkanoate (mcl-PHA) production from volatile fatty acids derived from the anaerobic digestion of grass vol.98, pp.2, 2010, https://doi.org/10.1007/s00253-013-5323-x
  3. Softwood hydrolysate as a carbon source for?polyhydroxyalkanoate production vol.89, pp.7, 2014, https://doi.org/10.1002/jctb.4196
  4. Pseudomonas pseudoalcaligenes CECT5344, a cyanide-degrading bacterium with by-product (polyhydroxyalkanoates) formation capacity vol.14, pp.None, 2010, https://doi.org/10.1186/s12934-015-0267-8
  5. NITROGEN SOURCES ON TPOMW VALORIZATION THROUGH SOLID STATE FERMENTATION PERFORMED BY Yarrowia lipolytica vol.33, pp.2, 2010, https://doi.org/10.1590/0104-6632.20160332s20150146
  6. Azotobacter vinelandii: the source of 100 years of discoveries and many more to come vol.164, pp.4, 2010, https://doi.org/10.1099/mic.0.000643
  7. The Modification of Regulatory Circuits Involved in the Control of Polyhydroxyalkanoates Metabolism to Improve Their Production vol.8, pp.None, 2020, https://doi.org/10.3389/fbioe.2020.00386