References
- Arnold, K., L. Bordoli, J. Kopp, and T. Schwede. 2006. The SWISS-MODEL Workspace: A Web-based environment for protein structure homology modelling. Bioinformatics 22: 195-201. https://doi.org/10.1093/bioinformatics/bti770
- DeLano, W. L. 2003. PyMOL Reference Manual. DeLano Scientific LLC, San Carlos, CA.
- Guex, N. and M. C. Peitsch. 1997. SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling. Electrophoresis 18: 2714-2723. https://doi.org/10.1002/elps.1150181505
- Henrissat, B. 1991. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 280: 309-316.
-
Igarashi, K., Y. Hatada, H. Hagihara, K. Saeki, M. Takaiwa, T. Uemura, et al. 1998. Enzymatic properties of a novel liquefying
$\alpha$ -amylase from an alkaliphilic Bacillus isolate and entire nucleotide and amino acid sequences. Appl. Environ. Microbiol. 64: 3282-3289. -
Janecek, S. 2002. How many conserved sequence regions are there in the
$\alpha$ -amylase family? Biologia 57 (Suppl. 11): 29-41. - Kuriki, T., H. Kaneko, M. Yanase, H. Takata, J. Shimada, S. Handa, T. Takada, H. Umeyama, and S. Okada. 1996. Controlling substrate preference and transglycosylation activity of neopullulanase by manipulating steric and hydrophobicity in active center. J. Biol. Chem. 271: 17321-17329. https://doi.org/10.1074/jbc.271.29.17321
- MacGregor, E. A. 2005. An overview of clan GH-H and distantly-related families. Biologia 60 (Suppl. 16): 5-12.
- Miller, L. H. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 246-248.
- Nakajima, R., T. Imanaka, and S. Aiba. 1985. Nucleotide sequence of the Bacillus stearothermophilus alpha-amylase gene. J. Bacteriol. 163: 401-406.
- Pandey, A., P. Nigam, C. R. Soccol, V. T. Soccol, D. Singh, and R. Mohan. 2000. Advances in microbial amylases. Biotechnol. Appl. Biochem. 31: 135-152. https://doi.org/10.1042/BA19990073
-
Rivera, M. H., M. A. Lopez, X. Soberon, and G. Saab-Rincon. 2003.
$\alpha$ -Amylase from Bacillus licheniformis mutants near to the catalytic site: Effects on hydrolytic and transglycosylation activity. Protein Eng. 16: 505-514. https://doi.org/10.1093/protein/gzg060 -
Saab-Rincon, G., R. G. Del, R. I. Santamaria, M. A. Lopez, and X. Soberon. 1999. Introducing transglycosylation activity in a liquefying
$\alpha$ -amylase. FEBS Lett. 453: 100-106. https://doi.org/10.1016/S0014-5793(99)00671-7 - Schwede, T., J. Kopp, N. Guex, and M. C. Peitsch. 2003. SWISS-MODEL - An automated protein homology-modeling server. Nucleic Acids Res. 31: 3381-3385. https://doi.org/10.1093/nar/gkg520
- Svensson, B., M. T. Jensen, H. Mori, K. S. Bak Jensen, I. Bnsager, et al. 2002. Fascinating facets of function and structure of amylolytic enzymes of glycoside hydrolase family 13. Biologia 57 (Suppl. 11): 5-19.
- Takata, H., T. Kuriki, S. Okada, Y. Takesada, M. Iizuka, N. Minamiura, and T. Imanaka. 1992. Action of neopullulanase. Neopullulanase catalyzes both hydrolysis and transglycosylation at alpha-(1,4) and alpha-(1,6)-glucosidic linkages. J. Biol. Chem. 267: 18447-18452.
- Takkinen, K., R. F. Pettersson, N. Kalkkinen, I. Palva, H. Soederlund, and L. Kaeaeriaeinen. 1983. Amino acid sequence of alpha-amylase from Bacillus amyloliquefaciens deduced from the nucleotide sequence of the cloned gene. J. Biol. Chem. 258: 1007-1013.
- Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins. 1997. The ClustalX Windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 24: 4876-4882.
- Yuuki, T., T. Nomura, H. Tezuka, A. Tsuboi, H. Yamagata, N. Tsukagoshi, and S. Udaka. 1985. Complete nucleotide sequence of a gene coding for heat- and pH-stable alpha amylase of Bacillus licheniformis: Comparison of the amino acid sequences of three bacterial liquefying alpha-amylases deduced from the DNA sequences. J. Biochem. 98: 1147-1156.