References
- Chang, Y. -H. O. (2001). Hybrid fuzzy least-squares regression analysis and its reliability measures, Fuzzy Sets and Systems, 119, 225-246. https://doi.org/10.1016/S0165-0114(99)00092-5
- Chao, R. and Ayyub, B. M. (1996). Structural analysis with fuzzy variables, Microcomputers in Civil Engineering, 11, 47-58. https://doi.org/10.1111/j.1467-8667.1996.tb00308.x
- Gunn, S. (1998). Support vector machines for classification and regression, ISIS Technical Report, University of Southampton.
- Hong, D. H. and Hwang, C. (2003). Support vector fuzzy regression machines, Fuzzy Sets and Systems, 138, 271-281. https://doi.org/10.1016/S0165-0114(02)00514-6
- Hong, D. H. and Hwang, C. (2005). Interval regression analysis using quadratic loss support vector machine, IEEE Transactions on Fuzzy Systems, 13, 229-237. https://doi.org/10.1109/TFUZZ.2004.840133
- Hwang, C., Hong, D. H., Na, E., Park, H. and Shim, J. (2005). Interval regressing analysis using support vector machine and quantile regression, Lecture Notes in Computer Science, 3613, 100-109. https://doi.org/10.1007/11539506_12
- Hwang, C., Hong, D. H. and Seok, K. H. (2006). Support vector interval regression machine for crisp input and out data, Fuzzy Sets and Systems, 157, 1114-1125.
- Shim, J., Hwang, C. and Hong, D. H. (2009), Fuzzy semiparametric support vector regression for seasonal time series analysis, Communications of the Korean Statistical Society, 16, 335-348. https://doi.org/10.5351/CKSS.2009.16.2.335
- Smola, A. J. and Schoelkopf, B. (1998). A tutorial on support vector regression, Neuro-COLT2 Technical Report, NeuroCOLT.
- Suykens, J. A. K. (2001). Nonlinear modelling and support vector machines, Proceeding of the IEEE International Conference on Instrumentation and Measurement Technology, Budapest, Hungary, 287-294.
- Tanaka, H. (1987). Fuzzy data anlysis by possigbilistic linear models, Fuzzy Sets and Systems, 24, 363-375. https://doi.org/10.1016/0165-0114(87)90033-9
- Tanaka, H., Uejima, S. and Asai, K. (1982). Linear regression analysis with fuzzy model, IEEE Transactions and Systems, Man, and Cybernetics, 12, 903-907. https://doi.org/10.1109/TSMC.1982.4308925
- Tanaka, H. and Watada, J. (1988). Possibilistics linear systems, and their applications to linear regression mode, Fuzzy Sets and Systems, 27, 275-289. https://doi.org/10.1016/0165-0114(88)90054-1
- Vapnik, V. N. (1998). Statistical Learning Theory, John Wiley & Sons, New York.