DOI QR코드

DOI QR Code

Efficient Top-Emitting Organic Light Emitting Diode with Surface Modified Silver Anode

  • Kim, Sung-Jun (Material Science and Engineering, Pohang University of Science and Technology) ;
  • Hong, Ki-Hyon (Material Science and Engineering, Pohang University of Science and Technology) ;
  • Kim, Ki-Soo (Material Science and Engineering, Pohang University of Science and Technology) ;
  • Lee, Ill-Hwan (Material Science and Engineering, Pohang University of Science and Technology) ;
  • Lee, Jong-Lam (Material Science and Engineering, Pohang University of Science and Technology)
  • Received : 2010.05.19
  • Accepted : 2010.06.22
  • Published : 2010.07.01

Abstract

The enhancement of quantum efficiency using a surface modified Ag anode in top-emitting organic light emitting diodes (TEOLEDs) is reported. The operation voltage at the current density of $1\;mA/cm^2$ of TEOLEDs decreased from 9.3 V to 4.3 V as the surface of anode coated with $CuO_x$ layer. The work function of these structures were quantitatively determined using synchrotron radiation photoemission spectroscopy. Secondary electron emission spectra revealed that the work function of the Ag/$CuO_x$ structure is higher by 0.6 eV than that of Ag. Thus, the $CuO_x$ structure acts as a role in reducing the hole injection barrier by about 0.6 eV, resulting in a decrease of the turn-on voltage of top-emitting light emitting diodes.

Keywords

References

  1. J. Hwang, A. Wan, and A. Kahn, Mat. Sci. Eng. R 64, 1 (2009). https://doi.org/10.1016/j.mser.2008.12.001
  2. S. Braun, W. R. Salaneck, and M. Fahlman, Adv. Mater. 21, 1450 (2009). https://doi.org/10.1002/adma.200802893
  3. I. G. Hill, A. Rajagopal, A. Kahn, and Y. Hu. Appl. Phys. Lett. 73, 662 (1998). https://doi.org/10.1063/1.121940
  4. F. Flores, J. Ortega, and H. Vázquez, Phys. Chem. Chem. Phys. 11, 8658 (2009). https://doi.org/10.1039/b902492c
  5. D. R. Lide, CRC Handbook of Chemistry and Physics, 83rd ed. (CRC Press, Boca Raton, FL, 2002).
  6. K. Hong and J.- L. Lee, Electrochem. Solid. State Lett. 11, H29 (2008). https://doi.org/10.1149/1.2817479
  7. Y.-N. Lai, W.-C. Hsu, C.-S. Lee, C.-W. Wang, C.-S. Ho, T.-Y. Lu, and W.-F. Lai, J. Electrochem. Soc. 157, J25 (2010). https://doi.org/10.1149/1.3264644
  8. Y. Q. Li, J. X. Tang, Z. Y. Xie, L. S. Hung, and S. S. Lau, Chem. Phys. Lett. 386, 128 (2004). https://doi.org/10.1016/j.cplett.2004.01.049
  9. H. Peng, J. Sun, X. Zhu, X. Yu, M. Wong, and H.-S. Kwok, Appl. Phys. Lett. 88, 073517 (2006). https://doi.org/10.1063/1.2172734
  10. M.-C. Hung, K.-Y. Wu, Y.-T. Tao, and H.-W. Huang, Appl. Phys. Lett. 89, 203106 (2006). https://doi.org/10.1063/1.2388880
  11. L.-W. Chong, Y.-N. Chou, Y.-L. Lee, T.-C. Wen, and T.-F. Guo, Org. Electron. 10, 1141 (2009). https://doi.org/10.1016/j.orgel.2009.05.029
  12. M. F. Al-Kuhaili, Vacuum 82, 623 (2008). https://doi.org/10.1016/j.vacuum.2007.10.004
  13. G. B. Murdoch, M. Greiner, M. G. Helander, Z. B. Wang, and Z. H. Lu, Appl. Phys. Lett. 93, 083309 (2008). https://doi.org/10.1063/1.2966140
  14. S. Y. Kim, K. Hong, K. Kim, and J.-L. Lee, Electron. Mater. Lett. 4, 63 (2008).
  15. X. Crispin, V. Geskin, A. Crispin, J. Cornil, R. Lazzaroni, W. R. Salaneck, and J.–L. Bredas, J. Am. Chem. Soc. 124, 8131 (2002). https://doi.org/10.1021/ja025673r
  16. Z. Qiao, R. Latz, and D. Mergel, Thin Solid Films 466, 250 (2004). https://doi.org/10.1016/j.tsf.2004.02.094