DOI QR코드

DOI QR Code

A Study on Distributions of Boron Ions Implanted by Using B and BF2 Dual Implantations in Silicon

  • Jung, Won-Chae (Department of Electronic Engineering, Kyonggi University)
  • Received : 2010.04.14
  • Accepted : 2010.05.17
  • Published : 2010.06.25

Abstract

For the fabrication of PMOS and integrated semiconductor devices, B, $BF_2$ and dual elements with B and $BF_2$ can be implanted in silicon. 15 keV B ions were implanted in silicon at $7^{\circ}$ wafer tilt and a dose of $3.0{\times}10^{16}\;cm^{-2}$. 67 keV $BF_2$ ions were implanted in silicon at $7^{\circ}$ wafer tilt and a dose of $3.0{\times}10^{15}\;cm^{-2}$. For dual implantations, 67 keV $BF_2$ and 15keV B were carried out with two implantations with dose of $1.5{\times}10^{15}\;cm^{-2}$ instead of $3.0{\times}10^{15}\;cm^{-2}$, respectively. For the electrical activation, the implanted samples were annealed with rapid thermal annealing at $1,050^{\circ}C$ for 30 seconds. The implanted profiles were characterized by using secondary ion mass spectrometry in order to measure profiles. The implanted and annealed results show that concentration profiles for the ${BF_2}^+$ implant are shallower than those for a single $B^+$ and dual ($B^+$ and ${BF_2}^+$) implants in silicon. This effect was caused by the presence of fluorine which traps interstitial silicon and ${BF_2}^+$ implants have lower diffusion effect than a single and dual implantation cases. For the fabricated diodes, current-voltage (I-V) and capacitance-voltage (C-V) were also measured with HP curve tracer and C-V plotter. Electrical measurements showed that the dual implant had the best result in comparison with the other two cases for the turn on voltage characteristics.

Keywords

References

  1. W. C. Jung, J. KEEME, 15, 289 (2002).
  2. W. C. Jung, J. Korean Phys. Soc. 46, 1218 (2005).
  3. W. C. Jung and K. D. Lee, J. Korean Phys. Soc. 45, 1078 (2004).
  4. R. G. Wilson, J. Appl. Phys. 54, 6879 (1983) [DOI: 10.1063/1.331993].
  5. W. S. Yoo, T. Fukada, T. Setokubo, K. Aizawa, and T. Ohsawa, Jpn. J. Appl. Phys. 42, 1123 (2003) [DOI: 10.1143/JJAP. 42.1123].
  6. A. Dusch, J. Marcon, K. Masmoudi, F. Olivie, M. Benzohra, K. Ketata, and M. Ketata, Mater. Sci. Eng. B 80, 65 (2001) [DOI: 10.1016/S092-5107(00)00590-0].
  7. H. Ryssel and I. Ruge, “Ion Implantation”, Wiley, New York, (1986) p. 125.
  8. L. Frey, S. Bogen, L. Gong, W. Jung, and H. Ryssel, Nucl. Instrum. Methods Phys. Res. Sect. B 62, 410 (1992) [DOI: 10.1016/0168-583X(92)95267-U].
  9. L. Gong, S. Bogen, L. Frey, W. Jung, and H. Ryssel, Microelectron. Eng. 19, 495 (1992) [DOI: 10.1016/0167-9317(92)90482-7].
  10. A. F. Tasch and S. K. Banerjee, Nucl. Instrum. Methods Phys. Res. Sect. B 112, 177 (1996) [DOI: 10.1016/0168-583X(95)01246-X].
  11. U. Littmark and J. F. Ziegler, Phys. Rev. 23, (1980) [DOI: 10.1103/PhysRevA.23.64].
  12. J. P. Biersack and J. F. Ziegler, “Ion Implantation Techniques”, Springer-Verlag, Berlin, (1982) p. 281.
  13. T. E. Seidel, Nucl. Instrum. Methods Phys. Res. B 21, 96 (1987). https://doi.org/10.1016/0168-583X(87)90805-6
  14. J. P. Biersack, Nucl. Instrum. Methods Phys. Res. B 35, 205 (1988). https://doi.org/10.1016/0168-583X(88)90272-8
  15. M. C. Paek, O. J. Kwon, J. Y. Lee, and H. B. Im, J. Appl. Phys. 70, 4176 (1991). https://doi.org/10.1063/1.349141
  16. C. W. Bates, Jr. , Appl. Phys. Lett. 45, 1058 (1984). https://doi.org/10.1063/1.95067

Cited by

  1. Graphene defects induced by ion beam vol.408, 2017, https://doi.org/10.1016/j.nimb.2017.04.082
  2. Improving stress stability in low-pressure chemical vapor deposited silicon dioxide films by ion implantation vol.598, 2016, https://doi.org/10.1016/j.tsf.2015.12.012