DOI QR코드

DOI QR Code

Luteolin and Chicoric Acid, Two Major Constituents of Dandelion Leaf, Inhibit Nitric Oxide and Lipid Peroxide Formation in Lipopolysaccharide-Stimulated RAW 264.7 Cells

  • Park, Chung-Mu (Department of Smart Foods and Drugs, Biohealth Products Research Center, Inje University) ;
  • Park, Ji-Young (Sambang High School) ;
  • Song, Young-Sun (Department of Smart Foods and Drugs, Biohealth Products Research Center, Inje University)
  • 투고 : 2010.02.26
  • 심사 : 2010.04.19
  • 발행 : 2010.06.30

초록

Luteolin and chicoric acid are the most abundant phytochemicals in dandelion (Taraxacum officinale) leaf. In this study, four kinds of extraction methods [hot water, ambient temperature (AT) water, ethanol, and methanol] were applied to analyze the contents of both phytochemicals and verify their anti-inflammatory and antioxidative activities. The methanol extract showed the most potent nitric oxide (NO) inhibitory effect. The luteolin and chicoric acid concentrations were 3.42 and $12.86\;{\mu}g/g$ dandelion leaf in the methanol extract. The NO-suppressive effect of luteolin and chicoric acid was identified in a dose-dependent manner with $IC_{50}$ values of $21.2\;{\mu}M$ and $283.6\;{\mu}M$, respectively, in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells without cytotoxicity. Malondialdehyde (MDA) concentration, as an index for free radical injury on cell membrane, was also dose-dependently inhibited by the two compounds. The suppressive effect was further examined using mRNA and protein expression levels, which were attributable to the inhibition of inducible nitric oxide synthase (iNOS). These results suggest that two phytochemicals in dandelion leaf, luteolin and chicoric acid, may play an important role in the amelioration of LPS-induced oxidative stress and inflammation.

키워드

참고문헌

  1. Tracey KJ, Cerami A. 1994. Tumor necrosis factor: a pleiotropic cytokine and therapeutic target. Annu Rev Med 45:491-503. https://doi.org/10.1146/annurev.med.45.1.491
  2. Akira S, Taga T, Kishimoto T. 1993. Interleukin-6 in biology and medicine. Adv Immunol 54: 1-78. https://doi.org/10.1016/S0065-2776(08)60532-5
  3. Nathan C, Xie QW. 1994. Regulation of biosynthesis of nitric oxide. J Biol Chem 269: 13725-13728.
  4. Rathmell JC, Thompson CB. 1999. The central effectors of cell death in the immune system. Annu Rev Immunol17: 781-828. https://doi.org/10.1146/annurev.immunol.17.1.781
  5. Dargel R. 1992. Lipid peroxidation--a common pathogenetic mechanism?. Exp Toxicol Pathol 44: 169-181. https://doi.org/10.1016/S0940-2993(11)80202-2
  6. Bisset NG, Wichtl M. 1994. Herbal drugs and phytopharmaceuticals:a handbook for practice on a scientific basis. 2nd ed. CRC Press, New York, USA.
  7. Newall CA, Anderson LA, Phillipson JD. 1996. Herbal medicines: a guide for health-care professionals. Pharmaceutical Press, London, UK.
  8. Racz-Kotilla E, Racz G, Solomon A. 1974. The action of Taraxacum officinale extracts on the body weight and diuresis of laboratory animals. Planta Med 26: 212-217. https://doi.org/10.1055/s-0028-1099379
  9. Williams CA, Goldstone F, Greenham J. 1996. Flavonoids, cinnamic acids and coumarins from the different tissues and medicinal preparations of Taraxacum officinale. Phytochemistry 42: 121-127. https://doi.org/10.1016/0031-9422(95)00865-9
  10. Harris GK, Qian Y, Leonard SS, Sbarra DC, Shi X. 2006.Luteolin and chrysin differentially inhibit cyclooxygenase-2 expression and scavenge reactive oxygen species but similarly inhibit prostaglandin-E2 formation in RAW 264.7 cells. J Nutr 136: 1517-1521. https://doi.org/10.1093/jn/136.6.1517
  11. Stevenson LM, Matthias A, Banbury L, Penman KG, Bone KM, Leach DL, Lehmann RP. 2005. Modulation of macrophage immune responses by Echinacea. Molecule 10:1279-1285. https://doi.org/10.3390/10101279
  12. D'Agostino P, Ferlazzo V, Milano S, La Rosa M, Di BellaG, Caruso R, Barbera C, Grimaudo S, Tolomeo M, FeoS, Cillari E. 2001. Anti-inflammatory effects of chemically modified tetracyclines by the inhibition of nitric oxide and interleukin-12 synthesis in J774 cell line. Int Immunopharmacol 1: 1765-1776. https://doi.org/10.1016/S1567-5769(01)00100-X
  13. Fautz RB, Husein B, Hechenberger C. 1991. Application of the neutral red assay (NR assay) to monolayer cultures of primary hepatocytes: rapid colorimetric viability determination for the unscheduled DNA synthesis test (UDS).Mutat Res 253: 173-179. https://doi.org/10.1016/0165-1161(91)90130-Z
  14. Fraga CG, Leibovitz BE, Tappel AL. 1988. Lipid peroxidation measured as thiobarbituric acid-reactive substances in tissue slices: characterization and comparison with homogenates and microsomes. Free Radic Biol Med 4: 155-161. https://doi.org/10.1016/0891-5849(88)90023-8
  15. Kolb H, Kolb-Bachofen V. 1992. Nitric oxide: a pathogenetic factor in autoimmunity. Immunol Today 13: 157-160. https://doi.org/10.1016/0167-5699(92)90118-Q
  16. Berliner JA, Navab M, Fogelman AM, Frank JS, DemerLL, Edwards PA, Watson AD, Lusis AJ. 1995. Atherosclerosis:basic mechanisms. Oxidation, inflammation, and genetics. Circulation 91: 2488-2496. https://doi.org/10.1161/01.CIR.91.9.2488
  17. Gobert AP, Mersey BD, Cheng Y, Blumberg DR, NewtonJC, Wilson KT. 2002. Cutting edge: urease release by Helicobacter pylori stimulates macrophage inducible nitric oxide synthase. J Immunol 168: 6002-6006. https://doi.org/10.4049/jimmunol.168.12.6002
  18. van Acker SA, van den Berg DJ, Tromp MN, GriffioenDH, van Bennekom WP, van der Vijgh WJ, Bast A. 1996.Structural aspects of antioxidant activity of flavonoids. Free Radic Biol Med 20: 331-342. https://doi.org/10.1016/0891-5849(95)02047-0
  19. Noguchi N, Niki E. 2000. Phenolic antioxidants: a rationale for design and evaluation of novel antioxidant drug for atherosclerosis. Free Radic Biol Med 28: 1538-1546. https://doi.org/10.1016/S0891-5849(00)00256-2
  20. Hertog MG, Sweetnam PM, Fehily AM, Elwood PC,Kromhout D. 1997. Antioxidant flavonols and ischemic heart disease in a Welsh population of men: the Caerphilly Study. Am J Clin Nutr 65: 1489-1494. https://doi.org/10.1093/ajcn/65.5.1489
  21. Knekt P, Jarvinen R, Reunanen A, Maatela J. 1996. Flavonoid intake and coronary mortality in Finland: a cohort study. BMJ 312: 478-481. https://doi.org/10.1136/bmj.312.7029.478
  22. Doll R. 1990. An overview of the epidemiological evidence linking diet and cancer. Proc Nutr Soc 49: 119-131. https://doi.org/10.1079/PNS19900018
  23. Kim HM, Shin HY, Lim KH, Ryu ST, Shin TY, ChaeHJ, Kim HR, Lyu YS, An NH, Lim KS. 2000. Taraxacum officinale inhibits tumor necrosis factor-alpha production from rat astrocytes. Immunopharmacol Immunotoxicol 22:519-530. https://doi.org/10.3109/08923970009026009
  24. Hagymasi K, Blazovics A, Feher J, Lugasi A, Kristo ST,Kery A. 2000. The in vitro effect of dandelions antioxidants on microsomal lipid peroxidation. Phytother Res 14:43-44. https://doi.org/10.1002/(SICI)1099-1573(200002)14:1<43::AID-PTR522>3.0.CO;2-Q
  25. Koo HN, Hong SH, Song BK, Kim CH, Yoo YH, KimHM. 2004. Taraxacum officinale induces cytotoxicity through TNF-alpha and IL-1alpha secretion in Hep G2 cells. Life Sci 74: 1149-1157. https://doi.org/10.1016/j.lfs.2003.07.030
  26. Hu C, Kitts DD. 2004. Luteolin and luteolin-7-O-glucoside from dandelion flower suppress iNOS and COX-2 in RAW264.7 cells. Mol Cell Biochem 265: 107-113. https://doi.org/10.1023/B:MCBI.0000044364.73144.fe
  27. Schultz K, Carle R, Schieber A. 2006. Taraxacum-a review on its phytochemical and pharmacological profile. J Ethnopharmacol 107: 313-323. https://doi.org/10.1016/j.jep.2006.07.021
  28. Sevanian A, Ursini F. 2000. Lipid peroxidation in membranes and low-density lipoproteins: similarities and differences.Free Radic Biol Med 29: 306-311. https://doi.org/10.1016/S0891-5849(00)00342-7

피인용 문헌

  1. Taraxacum officinale and related species—An ethnopharmacological review and its potential as a commercial medicinal plant vol.169, 2015, https://doi.org/10.1016/j.jep.2015.03.067
  2. Antioxidant Activity of Flavonoids Isolated from Vitex rotundifolia vol.33, pp.3, 2011, https://doi.org/10.4217/OPR.2011.33.3.255
  3. Taraxacum officinale Weber extracts inhibit LPS-induced oxidative stress and nitric oxide production via the NF-κB modulation in RAW 264.7 cells vol.133, pp.2, 2011, https://doi.org/10.1016/j.jep.2010.11.015
  4. Alleviated Oxidative Damage by Taraxacum officinale through the Induction of Nrf2-MAPK/PI3K Mediated HO-1 Activation in Murine Macrophages RAW 264.7 Cell Line vol.9, pp.7, 2010, https://doi.org/10.3390/biom9070288