

Journal of Information Processing Systems, Vol.6, No.2, June 2010 DOI : 10.3745/JIPS.2010.6.2.235

235

A Regression Test Selection and Prioritization
Technique

Ruchika Malhotra*, Arvinder Kaur* and Yogesh Singh*

Abstract—Regression testing is a very costly process performed primarily as a software
maintenance activity. It is the process of retesting the modified parts of the software and
ensuring that no new errors have been introduced into previously tested source code due
to these modifications. A regression test selection technique selects an appropriate
number of test cases from a test suite that might expose a fault in the modified program.
In this paper, we propose both a regression test selection and prioritization technique. We
implemented our regression test selection technique and demonstrated in two case
studies that our technique is effective regarding selecting and prioritizing test cases. The
results show that our technique may significantly reduce the number of test cases and
thus the cost and resources for performing regression testing on modified software.

Keywords—Regression Testing, Maintenance, Prioritization

1. INTRODUCTION

Software maintenance is becoming important and expensive day by day [1]. When the soft-
ware is modified during maintenance phases, retesting is performed. This process of retesting
the software is known as regression testing. Regression testing helps in increasing confidence as
to the stability of the modified program by locating errors in the modified program, and ensuring
the continued operation of the software. Regression testing is a very costly process and con-
sumes significant amounts of resources.

During regression testing, an already designed test suite is available for reuse. A regression
test selection technique may help us to select an appropriate number of test cases from this test
suite. The simplest technique is to run all test cases for verifying the modified program. This is
the safest technique, but it is practical only when the size of test suite is small. We may select
test cases randomly to reduce the size of the test suite. Many test cases selected randomly may
not have any relation with the modified program. Another technique suggests the selection of
test cases that execute the modified portion of the program and the portions that are affected by
these modifications. These test cases are known as modification revealing test cases. All those
test cases that reveal faults in the modified program are known as fault revealing test cases. Un-
fortunately, we do not have any efficient technique to find fault revealing and modification re-
vealing test cases. We may also indicate the precedence with which a test case may be addressed
during regression testing. A test case with higher rank will have higher priority than a test case

Manuscript received April 12, 2010; accepted May 11, 2010.
Corresponding Author: Ruchika Malhotra
* University School of Information Technology, Guru Gobind Singh Indraprastha University, Kashmere Gate, Delhi-

110403, India (ruchikamalhotra2004@yahoo.com, arvinderkaurtakkar@yahoo.com, ys66@rediffmail.com)

Copyright ⓒ 2010 KIPS (ISSN 1976-913X)

A Regression Test Selection and Prioritization Technique

236

with lower rank.
This work is the extension of earlier regression test selection and prioritization techniques [2].

We implemented this technique and validated this technique with the help of two case studies.
Unlike other techniques, our technique identifies test cases that execute the modified lines of
source code at least once and selects those test cases that execute the lines of source code after
deletion of lines from the execution history of the test cases The results show that the technique
can significantly reduce the cost and resources for performing regression testing on modified
programs.

This paper is organized as follows: The related work is summarized in Section 2. Section 3
provides background for the proposed technique.

The detailed algorithm for the proposed technique along with two case studies is given in sec-
tion 4. Section 5 presents the application of the technique and the conclusions of the research are
presented in section 6.

2. RELATED WORK

Fischer et al. proposed a minimization based regression test selection technique. This tech-
nique used linear equations in order to represent relationships between basic block and test cases
[3].

A safe regression test selection algorithm was proposed by Rothermal and Harrold [4]. They
used control flow graphs for a program or procedure and these graphs were used to select test
cases that execute modified source code from the given test suite. Wong et al. carried out a study
of regression testing [5]. Chen et al. [6] and Laski and Szermer, Vokolos and Frankl [7] have
also proposed safe regression test selection techniques. A hybrid technique was proposed by
Wong in 1994 [5].

Two complimentary algorithms were given by [8]. Harrold and Soffa proposed a data flow
coverage based regression test selection technique [9]. An empirical study was conducted by
Graves et al. in order to examine the costs and benefits of various regression test selection tech-
niques [10]. Rothermal et al. analyzed various test selection algorithms in [11]. The issues re-
lated to prioritization were addressed by Rothermal et al. [12]. Rothermal et al. described the
prioritization of test cases in large software development environments [13]. Kim02 [14] pro-
posed a prioritization technique based on historical execution data. Li07 [15] performed a em-
pirical study using several greedy algorithms.

3. BACKGROUND
Here we present the concept and types of prioritization. We also provide the basic notations

used in the proposed technique in the rest of the paper.

3.1 Prioritization Criteria

The efficiency of the regression testing is dependent upon the criteria of prioritization. There
are two varieties of test case prioritization viz. general test case prioritization and version spe-
cific test case prioritization. In general test case prioritization, for a given program with its test

Ruchika Malhotra, Arvinder Kaur and Yogesh Singh

237

suite, we prioritize the test cases that will be useful over a succession of subsequent modified
versions of the original program without any knowledge of modification(s). In version specific
test case prioritization, we prioritize the test cases i.e., when the original program is changed to
the modified program, versus the knowledge of the changes that have been made in the original
program.

3.2 Test cases selection criteria

We consider a program P with its modified program P′ and its test suite T created to test P.
When we modify P to P′, we would like to execute modified portion(s) of the source code and
the portion(s) affected by the modification(s) to see the correctness of modification(s). We nei-
ther have time nor resources to execute all test cases of T. Our objective is to reduce the size of
T to T′ using some selection criteria, which may help us to execute tests on the modified portion
of the source code and the portion(s) affected by modification(s).

The technique is based on version specific test case prioritization where information about
changes in the program is known. Hence, prioritization is focused around the changes in the
modified program. We may like to execute all modified lines of source code with a minimum
number of selected test cases. This technique identifies those test cases that:

(i) Execute the modified lines of source code at least once
(ii) Execute the lines of source code after deletion of deleted lines from the execution history

of the test case and that are not redundant.

The technique uses two algorithms one for “modification” and the other for “deletion”. The

following information is available from us and has been used to design the technique:

(iii) Program P with its modified program P′.
(iv) Test suite T with test cases t1, t2, t3,…..,tn.
(v) Execution history (number of lines of source code covered by a test case) of each test case

of test suite T.
(vi) Line numbers of lines of source code covered by each test case are stored in two dimen-

sional array (t11, t12, t13,……,tij).

4. REGRESSION TEST SELECTION AND PRIORITIZATION TECHNIQUE

We propose a regression test selection and prioritization technique, which prioritizes test
cases in test suite T and selects from test suite T a subset T′. The technique also prioritizes test
cases of T′ and recommends using high priority test cases first and then low priority test cases
and so on until time and resources are available or a reasonable level of confidence about cor-
rectness is achieved.

4.1 Modification algorithm

The “modification” portion of the technique is used to minimize and prioritize test cases
based on the modified lines of source code. The “modification” algorithm uses the following
information given in table 1.

A Regression Test Selection and Prioritization Technique

238

The following steps have been followed in order to select and prioritize test cases from test
suite T based on the modification in the program P.

Step I: Initialization of variables
Consider a program for classification of a triangle of 42 lines of code with a test suite of 13

test cases. Its input is a triple of positive integers (say a, b, c). The program output may have one
of the following words:

[Acute angled triangle, Obtuse angled triangle, Right angled triangle, Invalid triangle] Test
cases are generated using data flow testing technique. Data flow testing focuses on variable
definition and variable usage. The variables are defined and used (referenced) throughout the
program. Hence, this technique concentrates on how a variable is defined and used at different
places of the program. The execution history is given in table 2 (from definition to its usage).
Table 2 also shows the inputs given and the expected output from the program. We assume that
lines 5, 8, 10, 15, 20, 23, 28, 35 are modified.

Table 1. Variables used by “modification” algorithm

S.No Variable name Description
1 T1 It is a two dimensional array and is used to store line numbers of lines

of source code covered by each test case.
2 Modloc It is used to store the total number of modified lines of source code.
3 mod_locode It is a one dimensional array and is used to store line numbers of modi-

fied lines of source code
4 Nfound It is a one dimensional array and is used to store a number of lines of

source code matched with modified lines of each test case.
5 Pos It is a one dimensional array and is used to set the position of each test

case when nfound is sorted.
6 Candidate It is a one dimensional array. It sets the bit to 1 corresponding to the

position of the test case to be removed.
7 Priority It is a one dimensional array and is used to set the priority of the se-

lected test case.

Table 2. Test cases with execution history

Test case Id A B C Expected output Execution history
T1 30 20 40 Obtuse angled triangle 8, 9, 10, 11, 12, 13
T2 30 20 40 Obtuse angled triangle 8, 9, 10, 11, 12, 13, 14, 15, 16 , 20, 21, 22
T3 30 20 40 Obtuse angled triangle 10, 11, 12, 13
T4 30 20 40 Obtuse angled triangle 10, 11, 12, 13, 14, 15, 16, 20, 21, 22

T5 30 20 40 Obtuse angled triangle 12, 13, 14, 15, 16, 20, 21, 22
T6 30 40 50 Right angled triangle 22, 23, 24, 25, 28
T7 30 20 40 Obtuse angled triangle 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 20, 21
T8 - - - - 15, 16, 20, 21, 35
T9 30 10 15 Invalid triangle 5, 6, 7, 8, 9, 10, 11, 12, 14, 17, 18, 19, 20, 21

T10 30 10 15 Invalid triangle 18, 19, 20, 21, 35
T11 30 20 40 Obtuse angled triangle 24, 25
T12 30 20 40 Obtuse angled triangle 15, 16, 20, 21

Ruchika Malhotra, Arvinder Kaur and Yogesh Singh

239

The first portion of the “modification” algorithm is used to initialize and read values of vari-
ables T1, modloc, and mod_locode.

Step II: Selection and prioritization of test cases
The second portion of the algorithm counts the number of modified lines of source code cov-

ered by each test case (nfound).

The status of test cases covering modified lines of source code is given in table 3.

First portion of the “modification” algorithm

1. Repeat for i=1 to number of test cases
a. Repeat for j=1 to number of test cases

i. Initialize array T1[i][j] to zero
2. Repeat for i=1 to number of test cases

a. Repeat for j=1 to number of test cases
i. Store line numbers of line of source code covered by each test case.

3. Repeat for i=1 to number of modified lines of source code
a. Store line numbers of modified lines of source code in array mod_locode.

Second portion of the “modification” algorithm

2. Repeat for all true cases
a. Repeat for i=0 to number of test cases

i. Initialize array nfound[i] to zeroes
ii. Set pos[i] =i

b. Repeat for i=0 to number of test cases
i. Initialize l to zero

ii. If candidate[i] ≠ 1 then
Repeat for k=0 to modified lines of source code

 If t1[i][j]=mod_locode[k] then
 Increment nfound[i] by one
 Increment l by one

Table 3. Test cases with Number of Matches Found

Test Cases Line Nos. of lines matched No. of Matches (nfound)
T1 8, 10 2
T2 8, 10, 15, 20 4
T3 10 1
T4 10, 15, 20 3
T5 15, 20 2
T6 23, 28 2
T7 5, 8, 10, 15, 20 5
T8 15, 20, 35 3
T9 5, 8, 10, 20 4
T10 20, 35 2
T11 - 0
T12 15, 20 2

A Regression Test Selection and Prioritization Technique

240

Consider the third portion of “modification” algorithm. In this portion, we sort the nfound ar-
ray and select the test case with the highest value of nfound as the candidate for selection. The
test cases are arranged with an increasing order of priorities.

The test cases with less value have higher priority than the test cases with higher value. Hence,
the test cases are sorted on the basis of number of modified lines covered as shown in table 4.

The test case with candidate=1 is selected in each iteration. In the fourth portion of the algo-
rithm, the modified lines of source code included in the selected test cases are removed from the
mod_locode array. This process continues until there are no remaining modified lines of source
code covered by any test case.

Third portion of the “modification” algorithm
d. Initialize l to zero
e. Repeat for i=0 to number of test cases

i. Repeat for j=0 to number of test cases
 If nfound[i]>nfound[j] then
 t=nfound[i]
 nfound[i]=nfound[j]
 nfound[j]=t
 t=pos[i]
 pos[i]=pos[j]
 pos[j]=t

f. Repeat for i=0 to number of test cases
i. If nfound[i]=1 then

 Increment count
g. If count = 0 then

i. Goto end of the algorithm
h. Initialize candidate[pos[0]] = 1
i. Initialize priority[pos[0]]= m+1

Table 4. Test cases in decreasing order of number of modified lines covered

Test Cases Line Nos. of lines matched No. of Matches (nfound) Candidate Priority
T7 5, 8, 10, 15, 20 5 1 1
T2 8, 10, 15, 20 4 0 0
T9 5, 8, 10, 20 4 0 0
T4 10, 15, 20 3 0 0
T8 15, 20, 35 3 0 0
T1 8, 10 2 0 0
T5 15, 20 2 0 0
T6 23, 28 2 0 0
T10 20, 35 2 0 0
T12 15, 20 2 0 0
T3 10 1 0 0
T11 - 0 0 0

Ruchika Malhotra, Arvinder Kaur and Yogesh Singh

241

Since test case T7 is selected and it covers 1 and 2 lines of source code, these lines will be
removed from the mod_locode array.

mod_locode = [5, 8, 10, 15, 20, 23, 28, 35] - [5, 8, 10, 15, 20] = [23, 28, 35]
The remaining iterations of the “modification” algorithm are shown in tables 5-6.

mod_locode = [23, 28, 35] – [23, 28] = [35]

mod_locode = [35] – [35] = [Nil]
Hence test cases T7, T6, and T8 need to be executed on the basis of their corresponding prior-

ity (see figure 1). Out of 12 test cases, we need to run only 3 test cases for 100% code coverage
of modified lines of source code. This is a 75% reduction of test cases.

Table 6. Test cases in Descending Order of Number of Matches found (iteration 3)

Test Cases No. of matches (nfound) Matches found Candidate Priority
T8 1 35 1 3
T10 1 35 0 0
T1 0 - 0 0
T2 0 - 0 0
T3 0 - 0 0
T4 0 - 0 0
T5 0 - 0 0
T9 0 - 0 0
T11 0 - 0 0
T12 0 - 0 0

Table 5. Test cases in Descending Order of Number of Matches found (iteration 2)

Test Cases No. of matches (nfound) Matches found Candidate Priority
T6 2 23, 28 1 2
T8 1 35 0 0
T10 1 35 0 0
T1 0 - 0 0
T2 0 - 0 0
T3 0 - 0 0
T4 0 - 0 0
T5 0 - 0 0
T9 0 - 0 0
T11 0 - 0 0
T12 0 - 0 0

Fourth portion of the “modification” algorithm
i. Repeat for i=0 to length of selected test cases

i. Repeat for j=0 to modified lines of source code
 If t1[pos[0]][i] = mod[j] then
 mod[j] = 0

A Regression Test Selection and Prioritization Technique

242

4.2 Deletion algorithm

The “deletion” portion of the technique is used to (i) update the execution history of test cases
by removing the deleted lines of source code (ii) identify and remove those test cases that cover
only those lines which are covered by other test cases of the program. The information used in
the algorithm is given in table 7.

Step I: Initialization of variables
We consider a program for determination of day in a week of 118 lines of source code with a

test suite of 12 test cases. Its input is a triple of day, month and year with the values in the range.
The possible outputs would be the day of the week or an invalid date. The execution history
(paths covered by using data flow testing technique) is given in table 8.

We assume that lines numbers 6, 28, 36, 44, 50 and 61 are modified, and line numbers 12, 55

and 27 are deleted from the source code. The information is stored as:
delloc = 3
del_locode = [12, 27, 55]
modloc = 6
mod_locode = [6, 28, 36, 44, 50, 61]

Table 7. Variables used by “modification” algorithm

S.No Variable Description
1 T1 It is a two dimensional array. It keeps the number of lines of source code covered by

each test case i.
2 deloc It is used to store total number of lines of source code deleted.
3 del_locode It is a one dimensional array and is used to store line numbers of deleted lines of

source code.
4 count It is a two dimensional array. It sets the position corresponding to every matched line

of source code of each test case to 1
5 match It is a one dimensional array. It stores the total count of the number of 1’s in count

array for each test case.
6 deleted It is a one dimensional array. It keeps the record of redundant test cases. If the value

corresponding to test case i is 1 in a deleted array, then that test case is redundant and
should be removed.

Fig. 1. Test case selection and prioritization

Ruchika Malhotra, Arvinder Kaur and Yogesh Singh

243

After deleting line numbers 12, 27 and 55 the modified execution history is given in table 9.

Table 9. Modified execution history after deleting line numbers 12, 27, 55

Test case Id Execution history
T1 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19
T2 46, 47, 48, 53, 54, 56, 57, 61, 91
T3 50, 51, 52, 53, 54, 56, 57, 61, 91
T4 56, 57, 61, 91
T5 67, 68, 69, 91
T6 74, 75, 91
T7 89, 90, 91
T8 3, 4, 5, 6, 7, 8, 9, 10, 11, 44
T9 15, 16, 17, 18, 26, 37, 38, 39, 43, 44, 45, 46, 47, 48, 53, 54

T10 28, 29, 36, 43, 44
T11 34, 35, 36, 43, 44
T12 13, 14, 15, 16, 17, 18, 26

First portion of the “deletion” algorithm

1. Repeat for i=1 to number of test cases
a. Repeat for j=1 to length of test case i

i. Repeat for l to number of deleted lines of source code
If T1[i][j]=del_locode then

Repeat for k=j to length of test case i
 T1[i][k]=T1[i][k+1]

Initialize T1[i][k] to zero
Decrement c[i] by one

Table 8. Test cases with execution history

Test case Id Month Day Year Expected out-
put Execution history

T1 6 15 1900 Friday 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19
T2 1 15 1900 Monday 46, 47, 48, 53, 54, 55, 56, 57, 61, 91
T3 1 15 2009 Thursday 50, 51, 52, 53, 54, 55, 56, 57, 61, 91
T4 1 15 2009 Thursday 56, 57, 61, 91
T5 2 15 2000 Tuesday 67, 68, 69, 91
T6 4 15 2009 Wednesday 74, 75, 91
T7 7 15 2009 Wednesday 89, 90, 91
T8 6 15 1900 Friday 3, 4, 5, 6, 7, 8, 9, 10, 11, 44

T9 1 15 1900 Monday 15, 16, 17, 18, 26, 37, 38, 39, 43, 44, 45, 46, 47, 48, 53, 54,
55

T10 2 15 2000 Tuesday 28, 29, 36, 43, 44
T11 2 30 2009 Invalid Date 34, 35, 36, 43, 44
T12 2 15 1900 Thursday 13, 14, 15, 16, 17, 18, 26, 27

A Regression Test Selection and Prioritization Technique

244

Step II: Identification of redundant test cases
We want to find redundant test cases. A test case is a redundant test case, if it covers only

those lines which are covered by other test cases of the program. This situation may arise due to
deletion of few lines of the program.

Consider the second portion of the “deletion” algorithm. In this portion, the test case array is
initialized with line numbers of lines of source code covered by each test case.

The third portion of the algorithm compares lines covered by each test case with lines covered

by other test cases. A two dimensional array count is used to keep the record of line number
matched in each test case. If all the lines covered by a test case are being covered by some other
test case, then that test case is redundant and should not be selected for execution.

On comparing all values in each test case with all values of other test cases, we found that test

case 2, test case 4 and test case 12 are redundant test cases. These three test cases do not cover
any line which is not covered by other test cases as shown in table 10.

Table 10. Redundant test cases

Test Case Line Number of LOC Found In Test Case Redundant Y/N
46 T9 Y
47 T9 Y

T2

48 T9 Y

Third portion of the “deletion” algorithm

5. Repeat for i=1 to number of test cases
a. Repeat for j=1 to number of test cases

i. If i≠j and deleted[j]≠1 then
 Repeat for k=1 to until t1[i][k]≠0
 Repeat for l=1 until t1[j][l]≠0
 If t1[i][k]=t1[j][l] then
 Initialize count [i][k]=1

b. Repeat for m=1 to c[i]
i. If count[i][m]=1 then

 Increment match[i] with 1
c. If match[i]=c[i] then

i. Initialize deleted[i] to 1
6. Repeat for i=1 to number of test cases

a. If deleted[i] =1 then
i. Remove test case i (as it is a redundant test case)

Second portion of the “deletion” algorithm

2. Repeat for i=1 to number of test cases
a. Repeat for j=1 to number of test cases

i. Initialize array t1[i][j] to zero
ii. Initialize array count[i][j] to zero

3. Repeat for i=1 to number of test cases
a. Initialize deleted[i] and match [i] to zero

4. Repeat for i=1 to number of test cases
a. Initialize c[i] to number of line numbers in each test case i
b. Repeat for j=1 to c[i]
c. Initialize t1[i][j] to line numbers of line of source code covered by each test case

Ruchika Malhotra, Arvinder Kaur and Yogesh Singh

245

Test Case Line Number of LOC Found In Test Case Redundant Y/N
53 T3 Y
54 T3 Y
56 T3 Y
57 T3 Y
61 T3 Y
91 T3 Y
56 T3 Y
57 T3 Y
61 T3 Y

T4

91 T3 Y
13 T1 Y
14 T1 Y
15 T1 Y
16 T1 Y
17 T1 Y
18 T1 Y

T12

26 T9 Y

The remaining test cases are = [T1, T3, T5, T6, T7, T8, T9, T10, T11] and are given in table 11.

Now we will minimize and prioritize test case using “modification” algorithm given in sec-

tion 4.1. The status of test cases covering the modified lines is given in table 12.

Table 11. Modified table after removing T2, T4 and T12

Test case Id Execution history
T1 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19
T2 46, 47, 48, 53, 54, 56, 57, 61, 91
T3 50, 51, 52, 53, 54, 56, 57, 61, 91
T5 67, 68, 69, 91
T6 74, 75, 91
T7 89, 90, 91
T8 3, 4, 5, 6, 7, 8, 9, 10, 11, 44
T9 15, 16, 17, 18, 26, 37, 38, 39, 43, 44, 45, 46, 47, 48, 53, 54
T10 28, 29, 36, 43, 44
T11 34, 35, 36, 43, 44

Table 12. Test cases with Modified Lines

Test Cases Line Nos. of lines matched (found) No. of matches (nfound)
T10 3 28, 36, 44
T3 2 50, 61
T11 2 36, 44
T1 1 6
T8 1 44
T9 1 44
T5 0 -
T6 0 -
T7 0 -

A Regression Test Selection and Prioritization Technique

246

Test cases are sorted on the basis of no. of modified lines covered as shown in tables 13-15.

mod_locode = [6, 8, 36, 44, 50, 61] – [28, 36, 44] = [6, 50, 61]

mod_locode = [6, 50, 61] – [50, 61] = [6]

Hence, test cases T10, T3, and T1 are need to be executed and redundant test cases are T2, T4

and T12 (as shown in figure 2).
Out of the five test cases, we need to run only 3 test cases for 100% code coverage of modi-

fied code coverage. This is 75% reduction. If we run only those test cases that are covering any

Table 15. Test cases in Descending Order of Number of Modified lines covered (iteration 3)

Test Cases Line Nos. of lines matched (found) No. of matches (nfound) Candidate Priority
T11 1 6 1 3
T1 0 - 0 0
T8 0 - 0 0
T9 0 - 0 0
T5 0 - 0 0
T6 0 - 0 0
T7 0 - 0 0

Table 14. Test cases in Descending Order of Number of Modified lines covered (iteration 2)

Test Cases Line Nos. of lines matched (found) No. of matches (nfound) Candidate Priority
T10 3 28, 36, 44 1 1
T3 2 50, 61 0 0
T11 2 36, 44 0 0
T1 1 6 0 0
T8 1 44 0 0
T9 1 44 0 0
T5 0 - 0 0
T6 0 - 0 0
T7 0 - 0 0

Table 13. Test cases in Descending Order of Number of Modified lines covered

Test Cases Line Nos. of lines matched (found) No. of matches (nfound) Candidate Priority
T10 3 28, 36, 44 1 1
T3 2 50, 61 0 0
T11 2 36, 44 0 0
T1 1 6 0 0
T8 1 44 0 0
T9 1 44 0 0
T5 0 - 0 0
T6 0 - 0 0
T7 0 - 0 0

Ruchika Malhotra, Arvinder Kaur and Yogesh Singh

247

modified lines, then T10, T3, T1 are selected. This technique not only selects test cases, but also
prioritizes test cases. The source code of the proposed technique is given in Appendix.

5. APPLICATIONS
Test case selection and prioritization is essential for maintaining software. Every devel-

oper/tester faces this challenge in every organization. In the absence of any effective technique,
the random selection of test cases may prevail and the outcome regarding the correction of the
program may be illusive and sometimes becomes incorrect. The impact analysis of the changes
to the program may further become difficult and time consuming. Hence, an effective technique
not only reduces maintenance effort but also performs the desired impact analysis properly.
Moreover, such a technique becomes the focus of maintenance activities and may help to pre-
serve the quality of the software. The proposed regression test selection and prioritization tech-
nique can reduce the cost and time of regression testing and thereby reduce the cost of mainte-
nance activity. Adequate regression testing will also ensure the quality and reliability of the
modified software.

6. CONCLUSIONS
The goal of our work is to select and prioritize test cases for performing regression testing ac-

tivity. In this work, we implement and validate a regression test selection and prioritization
technique. The work is important due to the following reasons:
‧The proposed technique increases confidence in the correctness of the modified program.
‧The test cases selected using the proposed technique will identify and locate errors in the

modified program.
‧The proposed technique will help in preserving the quality and reliability of the software.
‧Test cases selected by the proposed technique will ensure the software’s continued opera-

tion.

The results show that the proposed regression selection and prioritization technique will help

in reducing the test cases by a significant number. Therefore, the software developers and testers
can use this technique in practice and this technique can reduce the cost of regression testing
significantly. In future we will analyze the proposed algorithm on large programs.

Fig. 2. Test cases selected and prioritized

A Regression Test Selection and Prioritization Technique

248

REFERENCES
[1] B. Beizer, “Software Testing Techniques,” Van Nostrand Reinhold, New York, 1990.
[1] K. K. Aggarwal, Yogesh Singh, and Arvinder Kaur, “Code Coverage Based Technique for Prioritiz-

ing Test Cases for Regression Testing,” ACM SIGSOFT, Vol.29, No.5, pp.1-4, 2004.
[2] K. Fischer, F. Raji, and A. Chruscicki, “A methodology for retesting modified software,” In Proceed-

ings of the National Telecommunications Conference B-6-3, pp.1-6, Nov., 1981.
[3] G. Rothermel and M. Harrold, “A Safe, Efficient Algorithm for Regression Test Selection,” Proceed-

ings of International Conference on Software Maintenance,” pp.358-367, 1993.
[4] W. E. Wong, J. R. Horgan, S. London and H. Aggarwal, “A Study of Effective Regression in Prac-

tice,” Proceedings of the 8th International Symposium on software reliability Engineering, pp.230-
238, Nov., 1994.

[5] Y. Chen, D. Rosenblum, and K. Vo, “Test Tube, A system for selective regression testing,” In Pro-
ceedings of the 16th International Conference on Software Engineering, 211-220, May, 1994.

[6] J. Laski and W. Szermer, “Identification of program modifications and its applications in software
maintenance,” In Proceedings of the 1992 Conference on Software Maintenance (Nov.). pp.282-290,
1992.

[7] D. Binkley, “Semantics Guided Regression Test Cost Reduction,” IEEE Transactions on Software
Engineering, Vol.23, No.8, pp.498-515, 1997.

[8] M.J Harrold, and M.L Soffa, “An incremental approach to unit testing during maintenance”, In Pro-
ceedings of the Conference on Software Maintenance (Oct.). pp.362-367, 1998.

[9] T. Graves, M.J. Harrold, J.M. Kim, A. Porter, and G. Rothermel, “An empirical study of regression
test selection techniques,” Proceedings 20th International Conference on Software Engineering,
Kyoto, Japan. IEEE Computer Society Press: Los Alamitos, CA, pp.188–197, 1998.

[10] G. Rothermel and M. Harrold, “Analysing Regression Test Selection Techniques,” IEEE Transactions
on Software Engineering, Vol.22, No.8, pp.529-551, 1996.

[11] G. Rothermel, R.H. Untch, C. Chu and M.J. Harold, “Test Case Prioritization,” IEEE Transactions on
Software Engineering, Vol.27, No.10, pp.928-948, Oct., 2001.

[12] A. Srivastava and J. Thiagarajan, “Effectively Prioritizing Tests in Development Environment,” Pro-
ceedings of the International Symposium of Software Testing and Analysis, Rome, 22-24 pp.97-106,
July, 2002.

[13] Kim, J. M., and A. Porter, “A history-based test prioritization technique for regression testing in re-
source constrained environments,” In Proceedings of the 24th International Conference on Software
Engineering, pp.119-129, 2002.

[14] Z. Li, M. Harman, and R. M. Hierons “Search algorithms for regression test case prioritization,”
IEEE Trans. On Software Engineering, Vol.33, No.4, April, 2007.

Ruchika Malhotra, Arvinder Kaur and Yogesh Singh

249

Appendix

#include<stdio.h>
#include<conio.h>
void main()
{
int t1[50][50]={0};
int count[50][50]={0};
int deleted[50],deloc,del_loc[50],k,c[50],l,num,m,n,match[50],i,j;
clrscr();
for(i=0;i<50;i++){
deleted[i]=0;
match[i]=0;
}
printf("Enter the number of test cases\n");
scanf("%d",&num);
for(i=0;i<num;i++){
 printf("Enter the length of test case %d\n",i+1);
 scanf("%d",&c[i]);
 printf("Enter the values of test case\n");
 for(j=0;j<c[i];j++){
 scanf("%d",&t1[i][j]);
 }
 }

printf("\nEnter the deleted lines of code:");
scanf("%d",&deloc);

for(i=0;i<deloc;i++)
 {
 scanf("%d",&del_loc[i]);
 }
for(i=0;i<num;i++){
 for(j=0;j<c[i];j++){
 for(l=0;l<deloc;l++){
 if(t1[i][j]==del_loc[l]){
 for(k=j;k<c[i];k++){
 t1[i][k]=t1[i][k+1];
 }
 t1[i][k]=0;
 c[i]--;
 }
 }
 }
}
printf("Test case execution history after deletion:\n");
for(i=0;i<num;i++){
 printf("T%d\t",i+1);
 for(j=0;j<c[i];j++){
 printf("%d ",t1[i][j]);
 }
printf("\n");
}
for(i=0;i<num;i++){
 for(j=0;j<num;j++){
 if(i!=j&&deleted[j]!=1){
 for(k=0;t1[i][k]!=0;k++){
 for(l=0;t1[j][l]!=0;l++){
 if(t1[i][k]==t1[j][l])
 count[i][k]=1;
 }
 }
 }
}

A Regression Test Selection and Prioritization Technique

250

for(m=0;m<c[i];m++)
 if(count[i][m]==1)
 match[i]++;
if(match[i]==c[i])
 deleted[i]=1;
}
for(i=0;i<num;i++)
if(deleted[i]==1)
printf("Remove Test case %d\n",i+1);
getch();
}

/*Program for test case selection for modified lines using regression test case selection algorithm*/

#include<stdio.h>
#include<conio.h>

void main()
{
int t1[50][50];
int count=0;
int candidate[50]={0},priority[50]={0},m=0,pos[50],found[50][50],k,t,c[50],l,num,n,index[50],i,j,modnum,
nfound[50],mod[50];
clrscr();
printf("Enter the number of test cases:");
scanf("%d",&num);
for(i=0;i<num;i++){
 printf("\nEnter the length of test case%d:",i+1);
 scanf("%d",&c[i]);
 }
for(i=0;i<50;i++)
 for(j=0;j<50;j++)
 found[i][j]=0;
for(i=0;i<num;i++)
 for(j=0;j<c[i];j++){
 t1[i][j]=0;
 }
for(i=0;i<num;i++){
 printf("Enter the values of test case %d\n",i+1);
 for(j=0;j<c[i];j++){
 scanf("%d",&t1[i][j]);
 }
 pos[i]=i;
 }
printf("\nEnter number of modified lines of code:");
scanf("%d",&modnum);
printf("Enter the lines of code modified:");
for(i=0;i<modnum;i++)
 scanf("%d",&mod[i]);
while(1)
{
count=0;
for(i=0;i<num;i++) {
 nfound[i]=0;
 pos[i]=i;
 }

for(i=0;i<num;i++){
l=0;
 for(j=0;j<c[i];j++){
 if(candidate[i]!=1){
 for(k=0;k<modnum;k++) {
 if(t1[i][j]==mod[k]){

Ruchika Malhotra, Arvinder Kaur and Yogesh Singh

251

 nfound[i]++;
 found[i][l]=mod[k];
 l++;
 }
 }
 }
}
}

l=0;
for(i=0;i<num;i++)
 for(j=0;j<num-1;j++)
 if(nfound[i]>nfound[j]){
 t=nfound[i];
 nfound[i]=nfound[j];
 nfound[j]=t;
 t=pos[i];
 pos[i]=pos[j];
 pos[j]=t;
 }

for(i=0;i<num;i++)
 if(nfound[i]==1)
 count++;
if(count==0)
 break;

 candidate[pos[0]]=1;
 priority[pos[0]]=++m;

printf("\nTestcase\tMatches");
for(i=0;i<num;i++) {
 printf("\n%d\t\t%d",pos[i]+1,nfound[i]);
 getch();
 }

for(i=0;i<c[pos[0]];i++)
 for(j=0;j<modnum;j++)
 if(t1[pos[0]][i]==mod[j]){
 mod[j]=0;
 }

printf("\nModified Array:");
for(i=0;i<modnum;i++){
 if(mod[i]==0){
 continue;
 }
 else {
 printf("%d\t",mod[i]);
 }
 }
}

count=0;
printf("\nTest case selected.....\n");
for(i=0;i<num;i++)
 if(candidate[i]==1){
 printf("\nT%d\t Priority%d\n ",i+1,priority[i]);
 count++;
 }
if(count==0){
 printf("\nNone");
 }
getch();
}

A Regression Test Selection and Prioritization Technique

252

Ruchika Malhotra
She is an assistant professor with the University School of Information Technol-
ogy, Guru Gobind Singh Indraprastha University, Delhi, India. Prior to joining the
school she worked as a full time research scholar and received a doctoral re-
search fellowship from the University School of Information Technology, Guru
Gobind Singh Indraprastha University, Delhi, India. She received her master’s
and doctorate degrees in software engineering from the University School of
Information Technology, Guru Gobind Singh Indraprastha University, Delhi, India.

Her research interests are in improving software quality, statistical and adaptive prediction models for
software metrics, neural nets modeling, and the definition and validation of software metrics. She has
published more than 33 research papers in international journals and conferences. Malhotra can be
contacted by e-mail at ruchikamalhotra2004@yahoo.com.

Arvinder Kaur
She is a Reader with the School of Information Technology. She obtained her
doctorate from Guru Gobind Singh Indraprastha University and her master’s
degree in computer science from Thapar Institute of Engg. and Tech. Prior to
joining the school, she worked with Dr. B.R. Ambedkar Regional Engineering
College, Jalandhar and Thapar Institute of Engg. and Tech. Her research inter-
ests include software engineering, object-oriented software engineering, software
metrics, microprocessors, operating systems, artificial intelligence, and computer

networks. She is also a lifetime member of ISTE and CSI. Kaur has published 22 research papers in
national and international journals and conferences. Her paper titled “Analysis of object oriented Met-
rics” was published as a chapter in the book Innovations in Software Measurement (Shaker -Verlag,
Aachen 2005). She can be reached by e-mail at arvinderkaurtakkar@yahoo.com.

Yogesh Singh
He is a professor with the University School of Information Technology, Guru
Gobind Singh Indraprastha University, Delhi, India. He is also Controller of Ex-
aminations with the Guru Gobind Singh Indraprastha University, Delhi, India. He
was founder Head (1999-2001) and Dean (2001-2006) of University School of
Information Technology, Guru Gobind Singh Indraprastha University, Delhi, India.
He received his master’s degree and doctorate from the National Institute of
Technology, Kurukshetra, India. His research interests include software engi-

neering focusing on planning, testing, metrics, and neural networks. He is coauthor of a book on soft-
ware engineering, and is a Fellow of IETE and member of IEEE. He has more than 200 publications in
international and national journals and conferences. Singh can be contacted by e-mail at ys66@ rediff-
mail.com.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Impact
 /LucidaConsole
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 1200
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

