DOI QR코드

DOI QR Code

Preparation and Evaluation of a 4-Branched Polyethylene Glycol Derivative Modified with Exendin-4 and Stearylamine for Extended Hypoglycemic Action

  • Received : 2010.04.29
  • Accepted : 2010.05.26
  • Published : 2010.06.20

Abstract

Albumin-modification has been viewed as one of the most effective ways of extending the short in vivo lifetimes of peptide drugs by delaying glomerular filtration. In this study, we describe a new type 2 anti-diabetic exendin-4 (Ex4) peptide derivative with significant binding ability to human serum albumin (HSA). This exendin-4 derivative consists of a 4-branched polyethylene glycol $(PEG)_{5k}$ (Mw: 20 kDa) modified with three stearylamines ($C_{18}-NH_2$) and one exendin-4 on its branches. PEG and stearylamine were selected to provide functionality to increase molecular size and bind to albumin, respectively. This derivative ($3C_{18}-4PEG_{5k}$-Ex4) was shown to have larger molecular size (Ca. 152 kDa) than actual (25.0 kDa) when subjected to size-exclusion chromatography, and the fluorescein-tagged $3C_{18}-4PEG_{5k}$-Ex4 displayed significant binding to the HSA-immobilized Sepharose CL-4B resin using confocal laser scanning microscopy. Furthermore, $3C_{18}-4PEG_{5k}$-Ex4 was found to have acceptable anti-hyperglycemic efficacy via three consecutive oral glucose tolerance testings (OGTT) in fasted type 2 diabetic db/db mice. The $HD_{total}$ value ($57.6{\pm}12.3%$) of $3C_{18}-4PEG_{5k}$-Ex4 at a 50 nmol/kg dose was 2-fold greater than that ($31.0{\pm}8.7%$) of native exendin-4 in non-fasted db/db mice. Especially, the blood glucose levels in the mice group treated with $3C_{18}-4PEG_{5k}$-Ex4 did not rebound to ~150 mg/dL until 24 h after the injection, which obviously shows the extended hypoglycemia. We believe that this derivative has great pharmaceutical potential as a novel long-acting type 2 anti-diabetic injection treatment.

Keywords

References

  1. Baggio, L.L., Huang, Q., Brown, T.J., Drucker, D.J., 2004. A recombinant human glucagon-like peptide (GLP)-1-albumin protein (albugon) mimics peptidergic activation of GLP-1 receptor-dependent pathways coupled with satiety, gastrointestinal motility, and glucose homeostasis. Diabetes 53, 2492-2500. https://doi.org/10.2337/diabetes.53.9.2492
  2. Caliceti, P., Veronese, F.M., 2003. Pharmacokinetic and biodistribution properties of poly(ethylene glycol)-protein conjugates. Adv. Drug Del. Rev. 55, 1261-1277. https://doi.org/10.1016/S0169-409X(03)00108-X
  3. Chae, S.Y., Chun, Y.G., Lee, S., Jin, C.H., Lee, E.S., Lee, K.C., Youn, Y.S., 2009. Pharmacokinetic and pharmacodynamic evaluation of site-specific PEGylated glucagon-like peptide-1 analogs as flexible postprandial-glucose controllers. J. Pharm. Sci. 98, 1556-1567. https://doi.org/10.1002/jps.21532
  4. Chae, S.Y., Jin, C.H., Shin, J.H., Son, S., Kim, T.H., Lee, S., Youn, Y.S., Byun, Y., Lee M.S., Lee, K.C., 2010. Biochemical, pharmaceutical and therapeutic properties of long-acting lithocholic acid derivatized exendin-4 analogs. J. Control. Release 142, 206-213. https://doi.org/10.1016/j.jconrel.2009.10.025
  5. Chuang, V.T., Kragh-Hansen, U., Otagiri, M., 2002. Pharmaceutical strategies utilizing recombinant human serum albumin. Pharm. Res. 19, 569-577. https://doi.org/10.1023/A:1015396825274
  6. Davidson, M.B., Bate, G., Kirkpatrick, P., 2005. Exenatide. Nat. Rev. Drug. Discov. 4, 713-714. https://doi.org/10.1038/nrd1828
  7. Deacon, C.F., 2004. Therapeutic strategies based on glucagon-like peptide 1. Diabetes 53, 2181-2189. https://doi.org/10.2337/diabetes.53.9.2181
  8. Edwards, C.M., Stanley, S.A., Davis, R., Brynes, A.E., Frost, G.S., Seal, L.J., Ghatei, M.A., Bloom, S.R., 2005. Exendin-4 reduces fasting and postprandial glucose and decreases energy intake in healthy volunteers. Am. J. Physiol. 281, 155-161.
  9. Harris, J.M., Martin, N.E., Modi, M., 2001. Pegylation, a novel process for modifying pharmacokinetics, Clin. Pharmacokinet. 40, 539-551. https://doi.org/10.2165/00003088-200140070-00005
  10. Kim, J.-G., Baggio, L.L., Bridon, D.P., Castaigne, J.-P., Robitaille, M.F., Jette, L., Benquet C., D.J. Druker, 2003. Development and characterization of a glucagon-like peptide 1-albumin conjugate: The ability to activate the glucagon-like peptide 1 receptor in vivo. Diabetes 52, 751-759. https://doi.org/10.2337/diabetes.52.3.751
  11. Kratz, F., 2008. Albumin as a drug carrier: Design of prodrugs, drug conjugates and nanoparticles. J. Control. Release 132, 171-183. https://doi.org/10.1016/j.jconrel.2008.05.010
  12. Lee, K.C., Chae, S.Y., Kim, T.H., Lee, S., Lee, E.S., Youn, Y.S., 2009. Intrapulmonary potential of polyethylene glycol-modified glucagon-like peptide-1s as a type 2 anti-diabetic agent. Regul. Pept. 152, 101-107. https://doi.org/10.1016/j.regpep.2008.09.008
  13. Markussen, J., Havelund, S., Kurtzhals, P., Andersen, A.S., Halstrom, J., Hasselager, E., Larsen, U.D., Ribel, U., Schaffer, L., Vad, K., Jonassen, I.,1996. Soluble, fatty acid acylated insulins bind to albumin and show protracted action in pigs. Diabetologia 39, 281-288. https://doi.org/10.1007/BF00418343
  14. Nielsen L.L., Young, A.A., Parkes, D.G., 2004. Pharmacology of exenatide (synthetic exendin-4): a potential therapeuticfor improved glycemic control of type 2 diabetes. Regul. Pept. 117, 77-88. https://doi.org/10.1016/j.regpep.2003.10.028
  15. Szayna, M., Doyle, M.E., Betkey, J.A., Holloway, H.W., Spencer, R.G., Greig, N.H., Egan, J.M., 2000. Exendin-4 decelerates food intake, weight gain, and fat deposition in Zucker rats. Endocrinology 141, 1936-1941. https://doi.org/10.1210/en.141.6.1936
  16. Thibaudeau, K., Leger, R., Huang, X., Robitaille M., Quraishi, O., Soucy, C., Bousquet-Gagnon, N., van Wyk, P., Paradis, V., Castaigne, J.-P., Bridon, D.,2005. Synthesis and evaluation of insulin-human serum albumin conjugates. Bioconjug. Chem. 16, 1000-1008. https://doi.org/10.1021/bc050102k
  17. Xu, G., Stoffers, D.A., Habener, J.F., Bonner-Weir, S., 1999. Exendin-4 stimulates both beta-cell replication and neogenesis, resulting in increased beta-cell mass and improved glucose tolerance in diabetic rats. Diabetes 48, 2270-2276. https://doi.org/10.2337/diabetes.48.12.2270