Enzymatic Properties of Barley $\alpha$-Amylase Chimeric Enzymes Produced by Staggered Extension Process

Staggered Extension Process를 통해 제조한 보리 알파아밀라제 Chimera 효소의 특성

  • Kim, Tae-Jip (Department of Food Science and Technology, Chungbuk National University) ;
  • Choi, Seung-Ho (Department of Food Science and Technology, Chungbuk National University) ;
  • Jang, Myoung-Uoon (Department of Food Science and Technology, Chungbuk National University) ;
  • Park, Jung-Mi (Department of Food Science and Technology, Chungbuk National University) ;
  • Svensson, Birte (Department of Systems Biology, Technical University of Denmark)
  • Received : 2010.03.02
  • Accepted : 2010.04.20
  • Published : 2010.06.28

Abstract

Barley malt produces two different $\alpha$-amylase isozymes (AMY1 and AMY2), which share up to 80% of amino acid sequence identity with each other. However, their enzymatic properties differ remarkably. In this study, five chimeric enzymes between AMY1 and 2 were constructed by staggered extension process (StEP) technique, and their enzymatic properties were characterized. According to the results, chimeric AMY-D2, D8, and E12 showed the mixed or intermediate types of calcium-dependent activity between AMY1 and 2. Meanwhile, only AMY-E10 chimera could be significantly inhibited by barley $\alpha$-amylase/subtilisin inhibitor (BASI) protein. Chimera AMY-C6 showed the same calcium-dependency as AMY1, while AMY-E10 was closely similar to AMY2. As a result, it can be proposed that some amino acid residues in the region II, III, and IV of barley $\alpha$-amylases can play very important roles in the interaction with BASI, and those in III, V, VI, and VII may partly affect on the calcium-dependent activity.

보리 맥아로부터 발견된 서로 다른 알파아밀라제 동질효소(AMY1, AMY2)는 80%에 달하는 높은 아미노산 서열의 상동성을 보이지만, 효소적 특성은 서로 매우 다르다. 따라서 본 연구에서는 staggered extension process(StEP) 기술을 이용하여 AMY1과 AMY2 유전자가 조합된 5종의 chimera 효소를 제조하고, 각각의 특성을 비교하여 총 8개 부위(I~VIII)의 영향을 확인하였다. 결과적으로, AMY-D2, D8, E12 chimera 효소의 경우, AMY1과 AMY2의 중간적 칼슘의존성을 보였으며, BASI(barley $\alpha$-amylase/subtilisin inhibitor) 단백질에 의한 저해효과는 AMY-E10 효소에서만 관찰되었다. 한편 AMY-C6의 경우, AMY1과 유사한 효소특성을 보였으며, AMY-E10은 AMY2 형태의 칼슘의존성을 나타내었다. 따라서 보리 아밀라제의 제 II, III, IV부위가 BASI와의 상호작용에 중요한 역할을 담당하며, 제 III, V, VI, VII부위는 칼슘의존성에 부분적인 영향을 미치는 것으로 판단하였다.

Keywords

References

  1. Bak-Jensen, K. S., G. Andre, T. E. Gottschalk, G. Paes, V. Tran, and B. Svensson. 2004. Tyrosine 105 and threonine 212 at outermost substrate binding subsites -6 and +4 control substrate specificity, oligosaccharide cleavage patterns, and multiple binding modes of barley ${\alpha}-amylase$ 1. J. Biol. Chem. 279: 10093-10102.
  2. Bozonnet, S., T. J. Kim, B. C. Bonsager, B. Kramhoft, P. K. Nielsen, K. S. Bak-Jensen, and B. Svensson. 2003. Engineering of barley ${\alpha}-amylase$. Biocatal. Biotransfor. 21: 209-214.
  3. Bush, D. S., L. Sticher, R. Van Huystee, D. wagner, and R. L. Jones. 1989. The calcium requirement for stability and enzymatic activity of two isoforms of barley aleuron ${\alpha}-amylase$. J. Biol. Chem. 264: 19392-19398.
  4. Bonsager, B. C., M. Prætorius-Ibba, P. K. Nielsen, and B. Svensson. 2003. Purification and characterization of the beta-trefoil fold protein barley alpha-amylase/subtilisin inhibitor overexpressed in Escherichia coli. Protein Expr. Purif. 30: 185-193. https://doi.org/10.1016/S1046-5928(03)00103-7
  5. Davies, G. and B. Henrissat. 1995. Structure and mechanism of glycosyl hydrolases. Structure 3: 853-859. https://doi.org/10.1016/S0969-2126(01)00220-9
  6. Gibbs, M. D., K. M. H. Nevalainen, and P. L. Bergquist. 2001. Degenerate oligonucleotide gene shuffling (DOGS): a method for enhancing the frequency of recombination with family shuffling. Gene 271: 13-20. https://doi.org/10.1016/S0378-1119(01)00506-6
  7. Juge, N., J. S. Andersen, D. Tull, P. Roepstorff, and B. Svensson. 1996. Overexpression, purification, and characterization of recombinant barley ${\alpha}-amylases$ 1 and 2 secreted by the methylotrophic yeast Pichia pastoris. Protein Expr. Purif. 8: 204-214. https://doi.org/10.1006/prep.1996.0093
  8. Juge, N., M. Sogaard, J. C. Chaix, M. F. Martin-Eauclaire, B. Svensson, G. Marchis-Mouren, and X. J. Guo. 1993. Comparison of barley malt ${\alpha}-amylase$ isozyme 1 and 2: Construction of cDNA hybrids by in vivo recombination, characterization and expression in yeast. Gene 130: 159-166. https://doi.org/10.1016/0378-1119(93)90415-Y
  9. Kadziola, A., J. Abe, B. Svensson, and R. Haser. 1994. Crystal and molecular structure of barley ${\alpha}-amylase$. J. Mol. Biol. 239: 104-121. https://doi.org/10.1006/jmbi.1994.1354
  10. Kadziola, A., M. Sogaard, B. Svensson, and R. Haser. 1998. Molecular structure of an ${\alpha}-amylase-inhibitor$ complex: implications for starch binding and catalysis. J. Mol. Biol. 278: 205-217. https://doi.org/10.1006/jmbi.1998.1683
  11. Knox, C. A. P., B. Sonthayanon, G. R. Chandra, and S. Muthukrishnan. 1987. Structure and organization of two divergent ${\alpha}-amylase$ genes from barley. Plant Mol. Biol. 9: 3-17. https://doi.org/10.1007/BF00017982
  12. Matsui, I. and B. Svensson. 1997. Improved activity and modulated action pattern obtained by random mutagenesis at the fourth ${\beta}-{\alpha}$ loop involved in substrate binding to the catalytic $({\beta}/{\alpha})_8-barrel$ domain of barley ${\alpha}-amylase$ 1. J. Biol. Chem. 272: 22456-22463. https://doi.org/10.1074/jbc.272.36.22456
  13. Mori, H., K. S. Bak-Jensen, and B. Svensson. 2002. Barley ${\alpha}-amylase$ Met53 situated at the high-affinity subsite -2 belongs to a substrate binding motif in the ${\beta}{\to}{\alpha}$ loop 2 of the catalytic $({\beta}/{\alpha})_8-barrel$ and is critical for activity and substrate specificity. Eur. J. Biochem. 269: 5377-5390. https://doi.org/10.1046/j.1432-1033.2002.03185.x
  14. Nielsen, P. K., B. C. Bonsager, C. R. Berland, B. W. Sigurskjold, and B. Svensson. 2003. Kinetics and energetics of the binding between ${\alpha}-amylase/subtilisin$ inhibitor and barley ${\alpha}-amylase$ 2 analyzed by surface plasmon resonance and isothermal titration calorimetry. Biochemistry 42: 1478-1487. https://doi.org/10.1021/bi020508+
  15. Robert, X., R. Haser, T. E. Gottschalk, F. Ratajczak, H. Driguez, B. Svensson, and N. Aghajari. 2003. The structure of barley ${\alpha}-amylase$ isozyme 1 reveals a novel role of domain C in substrate recognition and binding: a pair of sugar tongs. Structure 11: 973-984. https://doi.org/10.1016/S0969-2126(03)00151-5
  16. Rodenburg, K. W., F. Vallee, N. Juge, N. Aghajari, X. J. Guo, R. Haser, and B. Svensson. 2000. Specific inhibition of barley ${\alpha}-amylase$ 2 by barley ${\alpha}-amylase/subtilisin$ inhibitor depends on charge interactions and can be conferred isozyme 1 by mutation. Eur. J. Biochem. 267: 1019-1029. https://doi.org/10.1046/j.1432-1327.2000.01094.x
  17. Rodenburg, K. W., N. Juge, X. J. Guo, M. Sogaard, J. C. Chaix, and B. Svensson. 1994. Domain B protruding at the third ${\beta}$ strand of the ${\alpha}/{\beta}$ barrel in barley ${\alpha}-amylase$ confers distinct isozyme-specific properties. Eur. J. Biochem. 221: 277-284. https://doi.org/10.1111/j.1432-1033.1994.tb18739.x
  18. Rogers, J. C. and C. Milliman. 1983. Isolation and sequence analysis of a barley ${\alpha}-amylase$ cDNA clone. J. Biol. Chem. 258: 8169-8174.
  19. Stemmer, W. P. 1994. Rapid evolution of a protein in vitro by DNA shuffling. Nature 370: 389-391. https://doi.org/10.1038/370389a0
  20. Svendsen, I., J. Hejgaard, and J. Mundy. 1986. Complete amino acid sequence of the ${\alpha}-amylase$ inhibitor of endogenous ${\alpha}-amylase$ and subtilisin. FEBS Lett. 167: 210-214.
  21. Soaard, M. and B. Svensson. 1990. Expression of cDNAs encoding barley ${\alpha}-amylase$ 1 and 2 in yeast and characterization of the secreted proteins. Gene 94: 173-179. https://doi.org/10.1016/0378-1119(90)90384-4
  22. Vallee, F., A. Kadziola, Y. Bourne, M. Juy, K. W. Rodenburg, R. Haser, and B. Svensson. 1998. Barley ${\alpha}-amylase$ bound to its endogenous protein inhibitor BASI: Crystal structure of the complex at $1.9{\AA}$ resolution. Structure 6: 649-659. https://doi.org/10.1016/S0969-2126(98)00066-5
  23. Yuk, J. B., S. H. Choi, T. H. Lee, M. U. Jang, J. M. Park, A. R. Yi, B. Svensson, and T. J. Kim. 2008. Effect of calcium ion concentration on starch hydrolysis of barley ${\alpha}-amylase$ isozymes. J. Microbiol. Biotechnol. 18: 730-734.
  24. Zhao, H., L. Giver, Z. Shao, J. A. Affholter, and F. H. Arnold. 1998. Molecular evolution by staggered extension process (StEP) in vitro recombination. Nat. Biotechnol. 16: 258-261. https://doi.org/10.1038/nbt0398-258