초록
비디오 감시 장치는 사회안전망 구축분야에서 다양하게 응용되고 있다. 본 논문은 고정 카메라에서 취득된 시각정보를 이용한 침입 탐지 알고리즘을 제안하였다. 제안한 알고리즘은 비디오 시퀀스에서 AMF를 이용하여 모델링된 배경으로부터 물체 프레임 후보를 찾아내고, 감지된 물체는 움직임 정보의 분석으로 계산된다. 움직임 검출은 RGB 공간에서 2D 물체의 상대적 크기로 결정하였으며 물체 감지를 위한 임계값은 실험적인 방법으로 결정하였다. 실험 결과, 시 공간적 후보 정보들이 급격히 변화할 때, 물체 감지의 성능이 우수함을 확인할 수 있었다.
Video surveillance is widely used in establishing the societal security network. In this paper, intrusion detection based on visual information acquired by static camera is proposed. Proposed approach uses background model constructed by approximated median filter(AMF) to find a foreground candidate, and detected object is calculated by analyzing motion information. Motion detection is determined by the relative size of 2D object in RGB space, finally, the threshold value for detecting object is determined by heuristic method. Experimental results showed that the performance of intrusion detection is better one when the spatio-temporal candidate informations change abruptly.