DOI QR코드

DOI QR Code

진동수준이 원자력발전소 전기 캐비닛의 동특성에 미치는 영향

Effects of the Excitation Level on the Dynamic Characteristics of Electrical Cabinets of Nuclear Power Plants

  • 조성국 (제이스코리아 설계부) ;
  • 김두기 (군산대학교 토목환경공학부 토목공학) ;
  • 고성혁 (군산대학교 토목환경공학부 토목공학)
  • 투고 : 2010.01.06
  • 심사 : 2010.03.03
  • 발행 : 2010.06.30

초록

원자력발전소에 설치되는 안전관련 캐비닛형 전기기기는 설치 전에 내진검증이 요구된다. 전기기기의 동특성분석은 내진 검증에 포함된 중요한 과정이며, 기기의 정확한 해석모델을 작성하기 위해서도 필수적으로 요구되는 업무이다. 이 연구에서는 입력진동수준에 따른 기기의 동특성 변화를 분석하기 위하여 원전 지진감시시스템 캐비닛을 대상으로 진동대시험을 수행하고, 입력진동운동의 수준별로 계측된 진동응답신호를 진동수영역분해법으로 분석하였다. 분석결과, 대상기기는 입력진동수준의 크기에 따라 동특성이 비선형적으로 변화하고, 국내 원전의 안전정지지진 수준 이하의 진동에서도 동특성이 비선형적 거동을 보이고 있음을 확인하였다. 이러한 입력진동 수준에 따라 전기기기의 동특성이 비선형적으로 변하는 원인은 대상기기의 특성과 입력진동수준을 고려할 때 일반적인 재료 비선형보다는 각 부품들의 마찰력과 기하학적인 비선형성에 기인하는 것으로 판단된다. 따라서 전기 캐비닛의 입력진동수준에 따른 동특성의 비선형적 변화는 향후 안전관련 기기의 내진검증 업무에서 중요하게 검토되어야 할 것으로 판단된다.

Seismic qualification (SQ) is required prior to the installation of safety related electrical cabinets in nuclear power plants (NPPs). Modal identification of the electrical equipment is one of the most significant steps to perform SQ, and is an essential process to construct a realistic analytical model. In this study, shaking table tests were conducted to identify a variation of the dynamic characteristics of a seismic monitoring system cabinet installed in NPPs according to the excitation level. Modal identification of the cabinet has been performed by a frequency domain decomposition method. The results of this study show that the dynamic properties of the cabinet are nonlinearly varied according to the excitation level and the specimen behaves significantly in a nonlinear manner under safe shutdown earthquake motion in Korea. The main sources of the nonlinear behavior of the specimen have been judged by friction forces and geometrical nonlinearity rather than material nonlinearity. The nonlinear variation of the dynamic characteristics of the electrical cabinet might be accepted as an important fact that should be considered during the SQ of safety related equipment.

키워드

참고문헌

  1. 전력산업기술기준, END2000-1995, 전기1급 기기내진검증, 대한전기협회, 1995.
  2. IEEE, IEEE Recommend Practice for Seismic Qualification of Class 1E Equipment for Nuclear Power Generating Stations, ANSI/IEEE Std 344-1987, IEEE, N.Y., U.S.A., 1987.
  3. 조양희, 박형기, “원전지진계측시스템 캐비넷의 동특성분석 시험,” 대한토목학회 논문집, Vol. 19, No. I-3, 449-456, 1999.
  4. 조양희, 조성국, 박형기, “취약도변수의 개선을 위한 전기 캐비닛의 동특성 및 비선형성평가,” 한국지진공학회 논문집, 제4권, 제5호, 83-91, 2000.
  5. Kana, D. D., A Research Program for Seismic Qualification of nuclear Plant Electrical and Mechanical Equipment, NUREG/CR-3892, U.S. Nuclear Regulatory Commission, 1984.
  6. Gupta, A., Rustogi, S. K., and Gupta, A. K., “Ritz vector approach for evaluating in-cabinet response spectra,” Nucl. Eng., 190, 255-272, 1999. https://doi.org/10.1016/S0029-5493(99)00076-X
  7. Yang, J., Rustogi, S.K., and Gupta, A., “Rocking stiffness of mounting arrangement in electrical cabinets and control panels,” J. Nuclear Engineering and Design, Vol. 219, 127-141, 2002.
  8. Rustogi, S. and Gupta, A., “Modeling the Dynamic Behavior of Electrical Cabinets and Control Panels: Experimental and Analytical Results,” J. Structural Engineering, Vol. 130, No. 3, 511-519, 2004. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:3(511)
  9. Ibrahim, S.R. and Mikulcik, E.C., “A Method for the Direct Identification of Vibration Parameters from the Free Response,” Shock and Vibration Bulletin, No.47, Part 4, 183-198, 1977.
  10. Ibrahim, S.R., and Pappa, R.S., “Large Modal Survey Testing Using the Ibrahim Time Domain Identification Technique,” Journal of Spacecraft and Rockets, Vol. 19, No.5, 459-465, 1982. https://doi.org/10.2514/3.62285
  11. Juang, J.N, and Pappa, R.S., “An Eigensystem Realization Algorithm for Modal Parameter Identification and Model Reduction,” Journal of Guidance, Control and Dynamics, AIAA, Vol.8, No.5, 620-627, 1985. https://doi.org/10.2514/3.20031
  12. Junag, J.N., Applied System Identification, Prentice Hall, Englewood Cliffs, New Jersey, USA, 1994.
  13. Hermans, L. and Van Der Auweraer, H., “Modal Testing and Analysis of Structures under Operational Conditions: Industrial Applications,” Mechanical Systems and Signal Processing, Vol. 13, No. 2, pp. 193-216, 1999. https://doi.org/10.1006/mssp.1998.1211
  14. Overschee V.P. and De Moor, B., Subspace Identification for Linear Systems, Kluwer Academic Publisher, 1996.
  15. Peeters, B. and De Roeck, G., “Reference-Based Stochastic Subspace Identification for Output-Only Modal Analysis,” Mechanical Systems and Signal Processing, Vol.13, No.6, 855-878, 1999. https://doi.org/10.1006/mssp.1999.1249
  16. Bao, Z.W. and Ko., J.M., “Determination of Modal Parameters of Tall Buildings with Ambient Vibration Measurements,” The International Journal of Analytical and Experimental Modal Analysis, Vol.6, No.1, 57-68, 1991.
  17. Bendat, J.S. and Piersol, A.G., Engineering Applications of Correlation and Spectral Analysis, John Wiley & Sons, New York, USA, 1993.
  18. Newland, D.E., An Introduction to random vibration and spectral analysis, Longman, 1984.
  19. Yam, L.H., Leung, T.P., Li, D.B., and Xue, K.Z., “Use of Ambient Response Measurements to Determine Dynamic Characteristics of Slender Structures,” Engineering Structures, Vol. 19, No. 2, 145-150, 1997. https://doi.org/10.1016/S0141-0296(96)00027-2
  20. Brinker, R., Zhang, L. and Andersen, P., “Modal Identification from Ambient Response Using Frequency Domain Decomposition,” Proceedings of 16th International Modal Analysis Conference, San Antonio, Texas, USA, 625-630,2000.
  21. Otte, D., Van de Ponseele, P., and Leuridan, J., “Operational Shapes Estimation as a Function of Dynamic Loads,” Proceedinsg of the 8th International Modal Analysis Conference, 413-421, 1990.
  22. 이진학, 윤정방, “구조물의 응답자료만을 이용한 모드계수 추정법에 관한 비교연구,” 대한토목학회논문집. 23(2A), 187-201, 2003.