DOI QR코드

DOI QR Code

Electronic Structure and Magnetic Moments of Copper-atom in/on GaN Semiconductor

  • Kang, Byung-Sub (BK 21 Physics program and Department of Physics, Chungbuk National University) ;
  • Lee, Haeng-Ki (Department of Radiotechnology, Daegu Polytechnic College)
  • 투고 : 2010.03.08
  • 심사 : 2010.05.17
  • 발행 : 20100600

초록

The electronic and magnetic properties of Cu-doped GaN with a Cu concentration of 6.25% and 12.5% are examined theoretically using the full-potential linear muffin-tin orbital method. The magnetic moment of Cu atoms decreases with increasing Cu concentration. The spin-polarization of Cu atoms is reduced due to the Cu d-d interaction depending on the distance between the nearest neighbouring Cu atoms. Cu atoms exhibits a clustering tendency in GaN. For Cu-adsorbed GaN thin films with a surface coverage of 0.25, the ferromagnetic state is found to be the energetically favourable state with an induced magnetic moment of $0.54\;{\mu}_B$ per supercell.

키워드

참고문헌

  1. Masahiko Hashimoto, Yi-Kai Zhou, Masahito Kanamura,Hajime Asahi, Solid State Comm. 122, 37 (2002). https://doi.org/10.1016/S0038-1098(02)00073-X
  2. D. O'Mahony, J. G. Lunney, G. Tobin, and E. McGlynn,Solid-State Electronics 47, 533 (2003). https://doi.org/10.1016/S0038-1101(02)00408-2
  3. K. Sato, P. H. Dederichs, and H. Katayama-Yoshida, J. Kudrnovsky, Physica B 340, 863 (2003). https://doi.org/10.1016/j.physb.2003.09.241
  4. B. S. Kang, W. C. Kim, Y. Y. Shong, and H. J. Kang, J. Crystal Growth 287, 74 (2006). https://doi.org/10.1016/j.jcrysgro.2005.10.046
  5. ByungSub Kang, HaengKi Lee, KyeongSup Kim, andHeeJae Kang, Phys. Scr. 79, 025701 (2009). https://doi.org/10.1088/0031-8949/79/02/025701
  6. Q. Wang, A. K. Kandalam, Q. Sun, and P. Jena, Phys. Rev. B 73, 115411 (2006). https://doi.org/10.1103/PhysRevB.73.115411
  7. R. M. Frazier, G. T. Thaler, J. Y. Leifer, J. K. Hite, B. P.Gila, C. R. Abernathy, and S. J. Pearton, Appl. Phys. Lett. 86, 052101 (2005). https://doi.org/10.1063/1.1857074
  8. A. Ney, R. Rajaram, S. S. P. Parkin, T. Kammermeier,and S. Dhar, Phys. Rev. B 76, 035205 (2007). https://doi.org/10.1103/PhysRevB.76.035205
  9. X. Y. Cui, D. Fernandez-Hevia, B. Delley, A. J. Freeman,and C. Stampfl, J. Appl. Phys. 101, 103917 (2007). https://doi.org/10.1063/1.2735405
  10. J. M. Baik, H. W. Jong, J. K. Kim, and J. L. Lee, Appl. Phys. Lett. 82, 583 (2003). https://doi.org/10.1063/1.1541111
  11. S. Dhar, O. Brandt, A. Trampert, L. Daweritz, K. J.Friedland, K. H. Ploog, J. Leller, B. Beschoten, and G.Guntherodt, Appl. Phys. Lett. 82, 2077 (2003). https://doi.org/10.1063/1.1564292
  12. H. X. Lju, S. Y. Wu, R. K. Singh, L. Gu, D. Smith, N.Newman, N. R. Dilley, L. Montes, and M. B. Simmonds,Appl. Phys. Lett. 85, 4076 (2001). https://doi.org/10.1063/1.1812581
  13. A. Y. Polyakov, N. B. Simirnov. A. V. Govorkov, N. V.Pashkova, A. A. Shlensky, S. J. Pearton, M. E. Overberg,C. R. Abernathy, J. M. Zavada, and R. G. Wilson, J. Appl. Phys. 93, 5388 (2003). https://doi.org/10.1063/1.1565677
  14. X. Y. Cui, J. E. Medvedeva, B. Delly, A. J. Freeman, andC. Stampfl, Phys. Rev. Lett. 95, 256404 (2005). https://doi.org/10.1103/PhysRevLett.95.256404
  15. K. Osuch, E. B. Lombardi, and L. Adamowicz, Phys. Rev. B 71, 165213 (2005). https://doi.org/10.1103/PhysRevB.71.165213
  16. R. Q. Wu, G. W. Peng, L. Liu, and Y. P. Feng, Z. G. Huang,and Q. Y. Wu, Appl. Phys. Lett. 89, 062505 (2006). https://doi.org/10.1063/1.2335773
  17. L. Kronix, M. Jain, and J. R. Chelikowsky, Phys. Rev. B66, 041203(R) (2002).
  18. B. Sampedro, P. Crespo, A. Hernando, R. Litraan, J. C.Sanchez López, C. Lopez Cartes, A. Fernandez, J. Ramirez,J. Gonzalez Calbet, and M. Vallet, Phys. Rev. Lett. 91,237203 (2003). https://doi.org/10.1103/PhysRevLett.91.237203
  19. T. Taniyama, E. Ohta, and T. Sato, Europhys. Lett. 38,195 (1997). https://doi.org/10.1209/epl/i1997-00225-3
  20. A. J. Cox, J. G. Louderback, S. E. Apsel, and L. A.Bloomfield, Phys. Rev. B 49, 12295 (1994). https://doi.org/10.1103/PhysRevB.49.12295
  21. Lin-Hui Ye, A. J. Freeman, and B. Delley, Phys. Rev. B73, 033203 (2006). https://doi.org/10.1103/PhysRevB.73.033203
  22. D. B. Buchholz, R. P. H. Chang, J. H. Song, and J. B.Ketterson, Appl. Phys. Lett. 87, 082504 (2005). https://doi.org/10.1063/1.2032588
  23. A. F. Wright, J. F. Nelson, Phys. Rev. B 51, 7866 (1995). https://doi.org/10.1103/PhysRevB.51.7866
  24. W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965). https://doi.org/10.1103/PhysRev.140.A1133
  25. S. Y. Savrasov, Phys. Rev. B 54, 16470 (1996) https://doi.org/10.1103/PhysRevB.54.16470
  26. J. F. Janak, V. L. Moruzzi, and A. R. Williams, Phys. Rev. B 12, 1257 (1975). https://doi.org/10.1103/PhysRevB.12.1257
  27. Peng-Wei Wang, Xue-Jin Zhang, Bai-Qi Wang, Xin-Zheng Zhang, and Da-Peng Yu, Chinese Phys. Lett. 25,3040 (2008). https://doi.org/10.1088/0256-307X/25/8/082

피인용 문헌

  1. First-principles studies for magnetism in Cu-doped GaN vol.16, pp.3, 2011, https://doi.org/10.1007/s11859-011-0744-9
  2. Large Electrical Resistance Variation at Low Temperature in Transition Metal-Doped Ge Single Crystals vol.56, pp.9, 2015, https://doi.org/10.2320/matertrans.MA201571