DOI QR코드

DOI QR Code

Magnetic Properties and Relaxation of Vanadium Monolayer on Pd(001) Surface

  • 투고 : 2010.03.26
  • 심사 : 2010.05.27
  • 발행 : 20100600

초록

We investigated the magnetism of vanadium monolayers on a Pd(001) surface. The electronic structure and the magnetic properties of the V/Pd(001) system were determined with the use of the full-potential linearized augmented plane-wave method within the general gradient approximation. Three magnetic configurations were studied: non-, ferro-, and antiferromagnetic. From the total energy calculations, we found that the V/Pd(001) system is the most stable in the antiferromagnetic configuration. The importance of relaxation on the magnetic properties of the systems was also studied. It was found that the Pd(001) surface covered with a V monolayer undergoes considerable relaxation in which the spacing between Pd layers increases in all three magnetic configurations. Contrary to the Pd interlayer spacing, the distance between the V overlayer and the topmost Pd layer is reduced. The interlayer spacing between the V overlayer and the Pd surface layer is the largest for the antiferromagnetic configuration. In the relaxed antiferromagnetic structure, the magnitude of the calculated magnetic moments on the V atoms was $1.31\;{\mu}_B$. The presence of the vanadium monolayer does not affect the paramagnetic properties of the Pd(001) surface.

키워드

참고문헌

  1. C. L. Fu, A. J. Freeman, and T. Oguchi, Phys. Rev. Lett.54, 2700 (1985). https://doi.org/10.1103/PhysRevLett.54.2700
  2. S. Blugel, M. Weinert, and P. H. Dederichs, Phys. Rev. Lett. 60, 1077 (1988). https://doi.org/10.1103/PhysRevLett.60.1077
  3. S. Blugel, B. Drittler, R. Zeller, and P. H. Dederichs,Appl. Phys. A 49, 547 (1989). https://doi.org/10.1007/BF00616980
  4. S. J. Youn and S. C. Hong, J. Magnetics 13, 140 (2008). https://doi.org/10.4283/JMAG.2008.13.4.140
  5. V. S. Stepanyuk, W. Hergert, K. Wildberger, R. Zellerand P. H. Dederichs, Phys. Rev. B 53, 2121 (1996). https://doi.org/10.1103/PhysRevB.53.2121
  6. T. Bryk, D. M. Bylander, L. Kleinman, Phy. Rev. B 61,R3780 (2000). https://doi.org/10.1103/PhysRevB.61.R3780
  7. A. A. Ramanathan, J. M. Khalifeh, B. A. Hamad, J. Magn. Magn. Mater. 321, 3804 (2009). https://doi.org/10.1016/j.jmmm.2009.07.070
  8. S. C. Hong, J. I. Lee and R. Wu, Phy. Rev. B 75, 172402(2007). https://doi.org/10.1103/PhysRevB.75.172402
  9. S. C. Hong and J. I. Lee, J. Korean Phys. Soc. 52, 1099(2008). https://doi.org/10.3938/jkps.52.1099
  10. E. Wimmer, H. Krakauer, M. Weinert, and A. J. Freeman,Phys. Rev. B 24, 6864 (1981).
  11. M. Weinert, E. Wimmer, and A. J. Freeman, Phys. Rev. B26, 4571 (1982). https://doi.org/10.1103/PhysRevB.26.4571
  12. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
  13. J. M. Zhang, Y. Shu and K. W. Xu, Solid State Commun.137, 441 (2006). https://doi.org/10.1016/j.ssc.2005.12.012
  14. J. Quinn, Y. S. Li, D. Tian, H. Li, F. Jona, and P. M. Marcus, Phys. Rev. B 42, 11348 (1990). https://doi.org/10.1103/PhysRevB.42.11348