DOI QR코드

DOI QR Code

실리콘과 탄소 동시 스퍼터링에 의한 실리콘 양자점 초격자 박막 제조 및 특성 분석

Fabrication and Characterization of Si Quantum Dots in a Superlattice by Si/C Co-Sputtering

  • 김현종 (한국에너지기술연구원 태양광연구단) ;
  • 문지현 (한국에너지기술연구원 태양광연구단) ;
  • 조준식 (한국에너지기술연구원 태양광연구단) ;
  • 박상현 (한국에너지기술연구원 태양광연구단) ;
  • 윤경훈 (한국에너지기술연구원 태양광연구단) ;
  • 송진수 (한국에너지기술연구원 태양광연구단) ;
  • 오병성 (충남대학교 물리학과) ;
  • 이정철 (한국에너지기술연구원 태양광연구단)
  • Kim, Hyun-Jong (Photovoltaic Research Center, Korea Institute of Energy Research) ;
  • Moon, Ji-Hyun (Photovoltaic Research Center, Korea Institute of Energy Research) ;
  • Cho, Jun-Sik (Photovoltaic Research Center, Korea Institute of Energy Research) ;
  • Park, Sang-Hyun (Photovoltaic Research Center, Korea Institute of Energy Research) ;
  • Yoon, Kyung-Hoon (Photovoltaic Research Center, Korea Institute of Energy Research) ;
  • Song, Jin-Soo (Photovoltaic Research Center, Korea Institute of Energy Research) ;
  • O, Byung-Sung (Department of Physics, Chungnam National University) ;
  • Lee, Jeong-Chul (Photovoltaic Research Center, Korea Institute of Energy Research)
  • 투고 : 2010.05.17
  • 심사 : 2010.05.29
  • 발행 : 2010.06.27

초록

Silicon quantum dots (Si QDs) in a superlattice for high efficiency tandem solar cells were fabricated by magnetron rf sputtering and their characteristics were investigated. SiC/$Si_{1-x}C_x$ superlattices were deposited by co-sputtering of Si and C targets and annealed at $1000^{\circ}C$ for 20 minutes in a nitrogen atmosphere. The Si QDs in Si-rich layers were verified by transmission electron microscopy (TEM) and X-ray diffraction. The size of the QDs was observed to be 3-6 nm through high resolution TEM. Some crystal Si and -SiC peaks were clearly observed in the grazing incident X-ray diffractogram. Raman spectroscopy in the annealed sample showed a sharp peak at $516\;cm^{-1}$ which is an indication of Si QDs. Based on the Raman shift the size of the QD was estimated to be 4-6 nm. The volume fraction of Si crystals was calculated to be about 33%. The change of the FT-IR absorption spectrum from a Gaussian shape to a Lorentzian shape also confirmed the phase transition from an amorphous phase before annealing to a crystalline phase after annealing. The optical absorption coefficient also decreased, but the optical band gap increased from 1.5 eV to 2.1 eV after annealing. Therefore, it is expected that the optical energy gap of the QDs can be controlled with growth and annealing conditions.

키워드

참고문헌

  1. M. A. Green, Third generation photo voltaics: advanced solar energy conversion, Vol. 12, T. Kamiya, Springer, Berlin (2003).
  2. V. A. Volodin, M. D. Efremov, V. A. Gritsenko and S. A.Kochubei, Appl. Phys. Lett., 73, 1212 (1998). https://doi.org/10.1063/1.122130
  3. M. Zacharias, J. Heitmann, R. Scholz, U. Kahler, M.Schmidt and J. Blasing, Appl. Phys. Lett., 80, 661 (2002). https://doi.org/10.1063/1.1433906
  4. D. Song, E. -C. Cho, G. Conibeer, Y. Huang, C. Flynnand M. A. Green, J. Appl. Phys., 103, 083544 (2008). https://doi.org/10.1063/1.2909913
  5. J. C. Lee, “Development of breakthrough technologies for high efficiency solar cells based on silicon nano and quantum dot materials (in Korean)”, Final Report KIERA82415, Korea Institute of Energy Research, Daejeon(2008).
  6. M. Marinov and N. Zotov, Phys. Rev. B, 55, 2938 (1997). https://doi.org/10.1103/PhysRevB.55.2938
  7. G. Faraci, S. Gibilisco, P. Russo, A. R. Pennisi and S.La Rosa, Phys. Rev. B, 73, 033307 (2006). https://doi.org/10.1103/PhysRevB.73.033307
  8. S. Veprrek and F. A. Sarott, Phys. Rev. B, 36, 3344 (1987). https://doi.org/10.1103/PhysRevB.36.3344
  9. G. Faraci, S. Gibilisco, P. Russo, A. R. Pennisi, G.Compagnini, S. Battiato, R. Puglisi and S. La Rosa, Eur. Phys. J. B, 46, 457 (2005). https://doi.org/10.1140/epjb/e2005-00274-4
  10. M. F. Cerqueira, T. Monteiro, M. V. Stepikhova, M.Losurdo, M. J. Soares and I. Gomes, Nanotechnology,15, 802 (2004). https://doi.org/10.1088/0957-4484/15/7/015
  11. C. Serre, L. Calvo-Barrio, A. Pérez-Rodriguez, A.Romano-Rodríguez, J. R. Morante, Y. Pacaud, R. Kogler,V. Heera and W. Skorupa, J. Appl. Phys., 79, 6907 (1996). https://doi.org/10.1063/1.361514
  12. D. K. Basa and F. W. Smith, Thin Solid Films, 192, 121(1990). https://doi.org/10.1016/0040-6090(90)90483-T
  13. T. Rajagopalan, X. Wang, B. Lahlouh, C. Ramkumar, P.Dutta and S. Gangopadhyay, J. Appl. Phys., 94, 5252(2003). https://doi.org/10.1063/1.1609631
  14. F. Demichelis, G. Kaniadakis, A. Tagliaferro and E.Eresso, Appl. Opt., 26, 1737 (1987). https://doi.org/10.1364/AO.26.001737