DOI QR코드

DOI QR Code

BOUNDARY VALUE PROBLEMS FOR THE STATIONARY NORDSTRÖM-VLASOV SYSTEM

  • Bostan, Mihai (LABORATOIRE DE MATHEMATIQUES DE BESANCON UMR CNRS 6623, UNIVERSITE DE FRANCHE-COMTE)
  • Received : 2008.07.01
  • Published : 2010.07.01

Abstract

We study the existence of weak solution for the stationary Nordstr$\ddot{o}$m-Vlasov equations in a bounded domain. The proof follows by fixed point method. The asymptotic behavior for large light speed is analyzed as well. We justify the convergence towards the stationary Vlasov-Poisson model for stellar dynamics.

Keywords

References

  1. N. B. Abdallah, Weak solutions of the initial-boundary value problem for the Vlasov-Poisson system, Math. Methods Appl. Sci. 17 (1994), no. 6, 451-476. https://doi.org/10.1002/mma.1670170604
  2. H. Andreasson, The Einstein-Vlasov system/kinetic theory, Living Rev. Relativ. 5 (2002), 2002-7, 33 pp.
  3. A. Arsen'ev, Global existence of a weak solution of the Vlasov system of equations, U.R.S.S. Comp. and Math. Phys. 15 (1975), 131-143. https://doi.org/10.1016/0041-5553(75)90141-X
  4. C. Bardos, Problemes aux limites pour les equations aux derivees partielles du premier ordre a coefficients reels; theoremes d'approximation; application a l'equation de transport, Ann. Sci. Ecole Norm. Sup. (4) 3 (1970), 185-233. https://doi.org/10.24033/asens.1190
  5. J. Batt, W. Faltenbacher, and E. Horst, Stationary spherically symmetric models in stellar dynamics, Arch. Rational Mech. Anal. 93 (1986), no. 2, 159-183. https://doi.org/10.1007/BF00279958
  6. J. Batt, P. Morrison, and G. Rein, Linear stability of stationary solutions of the Vlasov-Poisson system in three dimensions, Arch. Rational Mech. Anal. 130 (1995), no. 2, 163-182.
  7. M. Bostan, Boundary value problem for the three dimensional time periodic Vlasov-Maxwell system, Commun. Math. Sci. 3 (2005), no. 4, 621-663. https://doi.org/10.4310/CMS.2005.v3.n4.a10
  8. M. Bostan, Asymptotic behavior of weak solutions for the relativistic Vlasov-Maxwell equations with large light speed, J. Differential Equations 227 (2006), no. 2, 444-498. https://doi.org/10.1016/j.jde.2005.10.018
  9. M. Bostan, Stationary solutions for the one dimensional Nordstrom-Vlasov system, Preprint 22 (2006), Universite de Franche-Comte.
  10. F. Bouchut, F. Golse, and C. Pallard, Classical solutions and the Glassey-Strauss theorem for the 3D Vlasov-Maxwell system, Arch. Ration. Mech. Anal. 170 (2003), no. 1, 1-15. https://doi.org/10.1007/s00205-003-0265-6
  11. S. Calogero, Spherically symmetric steady states of galactic dynamics in scalar gravity, Classical Quantum Gravity 20 (2003), no. 9, 1729–1741.
  12. S. Calogero and H. Lee, The non-relativistic limit of the Nordstrom-Vlasov system, Commun. Math. Sci. 2 (2004), no. 1, 19-34. https://doi.org/10.4310/CMS.2004.v2.n1.a2
  13. S. Calogero and G. Rein, On classical solutions of the Nordstrom-Vlasov system, Comm. Partial Differential Equations 28 (2003), no. 11-12, 1863-1885. https://doi.org/10.1081/PDE-120025488
  14. S. Calogero and G. Rein, Global weak solutions to the Nordstrom-Vlasov system, J. Differential Equations 204 (2004), no. 2, 323-338. https://doi.org/10.1016/j.jde.2004.02.011
  15. P. Degond, Local existence of solutions of the Vlasov-Maxwell equations and convergence to the Vlasov-Poisson equations for infinite light velocity, Math. Methods Appl. Sci. 8 (1986), no. 4, 533-558. https://doi.org/10.1002/mma.1670080135
  16. R. J. Diperna and P.-L. Lions, Global weak solutions of Vlasov-Maxwell systems, Comm. Pure Appl. Math. 42 (1989), no. 6, 729-757. https://doi.org/10.1002/cpa.3160420603
  17. R. J. Diperna and P.-L. Lions, Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math. 98 (1989), no. 3, 511-547. https://doi.org/10.1007/BF01393835
  18. J. Dolbeault, O. Sanchez, and J. Soler, Asymptotic behaviour for the Vlasov-Poisson system in the stellar-dynamics case, Arch. Ration. Mech. Anal. 171 (2004), no. 3, 301-327. https://doi.org/10.1007/s00205-003-0283-4
  19. R. Glassey and J. Schaeffer, On the “one and one-half dimensional” relativistic Vlasov-Maxwell system, Math. Methods Appl. Sci. 13 (1990), no. 2, 169-179. https://doi.org/10.1002/mma.1670130207
  20. R. Glassey and J. Schaeffer, The “two and one-half-dimensional” relativistic Vlasov Maxwell system, Comm. Math. Phys. 185 (1997), no. 2, 257-284. https://doi.org/10.1007/s002200050090
  21. R. Glassey and W. Strauss, Singularity formation in a collisionless plasma could occur only at high velocities, Arch. Rational Mech. Anal. 92 (1986), no. 1, 59-90.
  22. C. Greengard and P.-A. Raviart, A boundary-value problem for the stationary Vlasov-Poisson equations: the plane diode, Comm. Pure Appl. Math. 43 (1990), no. 4, 473-507. https://doi.org/10.1002/cpa.3160430404
  23. Y. Guo, Global weak solutions of the Vlasov-Maxwell system with boundary conditions, Comm. Math. Phys. 154 (1993), no. 2, 245-263. https://doi.org/10.1007/BF02096997
  24. S. Klainerman and G. Staffilani, A new approach to study the Vlasov-Maxwell system, Commun. Pure Appl. Anal. 1 (2002), no. 1, 103-125.
  25. H. Lee, The classical limit of the relativistic Vlasov-Maxwell system in two space dimensions, Math. Methods Appl. Sci. 27 (2004), no. 3, 249-287. https://doi.org/10.1002/mma.424
  26. P.-L. Lions and B. Perthame, Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system, Invent. Math. 105 (1991), no. 2, 415-430. https://doi.org/10.1007/BF01232273
  27. S. Mischler, On the trace problem for solutions of the Vlasov equation, Comm. Partial Differential Equations 25 (2000), no. 7-8, 1415-1443. https://doi.org/10.1080/03605300008821554
  28. G. Nordstrom, Zur Theorie der Gravitation vom Standpunkt des Relativitatsprinzips, Ann. Phys. 347 (1913), no. 13, 533-554. https://doi.org/10.1002/andp.19133471303
  29. K. Pfaffelmoser, Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data, J. Differential Equations 95 (1992), no. 2, 281-303. https://doi.org/10.1016/0022-0396(92)90033-J
  30. F. Poupaud, Boundary value problems for the stationary Vlasov-Maxwell system, Forum Math. 4 (1992), no. 5, 499-527. https://doi.org/10.1515/form.1992.4.499
  31. G. Rein, Existence of stationary, collisionless plasmas in bounded domains, Math. Methods Appl. Sci. 15 (1992), no. 5, 365-374. https://doi.org/10.1002/mma.1670150507
  32. G. Rein, Non-linear stability for the Vlasov-Poisson system-the energy-Casimir method, Math. Methods Appl. Sci. 17 (1994), no. 14, 1129-1140. https://doi.org/10.1002/mma.1670171404
  33. G. Rein, Selfgravitating systems in Newtonian theory-the Vlasov-Poisson system, Mathematics of gravitation, Part I (Warsaw, 1996), 179-194, Banach Center Publ., 41, Part I, Polish Acad. Sci., Warsaw, 1997.
  34. G. Rein, Stationary and static stellar dynamic models with axial symmetry, Nonlinear Anal. 41 (2000), no. 3-4, Ser. A: Theory Methods, 313-344. https://doi.org/10.1016/S0362-546X(98)00280-6
  35. G. Rein and A. D. Rendall, Global existence of classical solutions to the Vlasov-Poisson system in a three-dimensional, cosmological setting, Arch. Rational Mech. Anal. 126 (1994), no. 2, 183-201. https://doi.org/10.1007/BF00391558
  36. A. D. Rendall, An introduction to the Einstein-Vlasov system, Mathematics of gravitation, Part I (Warsaw, 1996), 35-68, Banach Center Publ., 41, Part I, Polish Acad. Sci., Warsaw, 1997.
  37. A. D. Rendall, The Einstein-Vlasov system, The Einstein equations and the large scale behavior of gravitational fields, 231-250, Birkhauser, Basel, 2004.
  38. J. Schaeffer, The classical limit of the relativistic Vlasov-Maxwell system, Comm. Math. Phys. 104 (1986), no. 3, 403-421. https://doi.org/10.1007/BF01210948
  39. J. Schaeffer, Global existence of smooth solutions to the Vlasov-Poisson system in three dimensions, Comm. Partial Differential Equations 16 (1991), no. 8-9, 1313-1335. https://doi.org/10.1080/03605309108820801