Acknowledgement
Supported by : Korea Research Foundation
References
- K. A. Brown and K. R. Goodearl, Lectures on Algebraic Quantum Groups, Advanced Courses in Mathematics. CRM Barcelona. Birkhauser Verlag, Basel, 2002.
- V. Chari and A. Pressley, A Guide to Quantum Groups, Cambridge University Press, Cambridge, 1994.
-
T. J. Hodges and T. Levasseur, Primitive ideals of
$C_q$ [SL(3)], Comm. Math. Phys. 156 (1993), no. 3, 581–605. - T. J. Hodges, T. Levasseur, and M. Toro, Algebraic structure of multiparameter quantum groups, Adv. Math. 126 (1997), no. 1, 52-92. https://doi.org/10.1006/aima.1996.1612
- J. Hong and S.-J. Kang, Introduction to Quantum Groups and Crystal Bases, Graduate Studies in Mathematics, 42. American Mathematical Society, Providence, RI, 2002.
- J. E. Humphreys, Linear Algebraic Groups, Graduate Texts in Mathematics, vol. 21, Springer-Verlag Inc., thirding printing, 1987.
- J. C. Jantzen, Lectures on Quantum Groups, Graduate Studies in Mathematics, vol. 6, American Mathematical Society, Providence, 1996.
- A. Joseph, Quantum Groups and Their Primitive Ideals, A series of modern surveys in mathematics, vol. 3. Folge.Band 29, Springer-Verlag, Berlin, 1995.
- L. I. Korogodski and Y. S. Soibelman, Algebras of Functions on Quantum Groups. Part I., Mathematical Surveys and Monographs, 56. American Mathematical Society, Providence, RI, 1998.
- L. A. Lambe and D. E. Radford, Introduction to the Quantum Yang-Baxter Equation and Quantum Groups: an algebraic approach, Mathematics and its Applications, 423. Kluwer Academic Publishers, Dordrecht, 1997.
Cited by
- Poisson Hopf algebra related to a twisted quantum group vol.45, pp.1, 2017, https://doi.org/10.1080/00927872.2016.1175451