DOI QR코드

DOI QR Code

LIE BIALGEBRAS ARISING FROM POISSON BIALGEBRAS

  • Oh, Sei-Qwon (DEPARTMENT OF MATHEMATICS CHUNGNAM NATIONAL UNIVERSITY) ;
  • Cho, Eun-Hee (DEPARTMENT OF MATHEMATICS CHUNGNAM NATIONAL UNIVERSITY)
  • Received : 2008.01.31
  • Published : 2010.07.01

Abstract

It gives a method to obtain a natural Lie bialgebra from a Poisson bialgebra by an algebraic point of view. Let g be a coboundary Lie bialgebra associated to a Poission Lie group G. As an application, we obtain a Lie bialgebra from a sub-Poisson bialgebra of the restricted dual of the universal enveloping algebra U(g).

Keywords

Acknowledgement

Supported by : Korea Research Foundation

References

  1. K. A. Brown and K. R. Goodearl, Lectures on Algebraic Quantum Groups, Advanced Courses in Mathematics. CRM Barcelona. Birkhauser Verlag, Basel, 2002.
  2. V. Chari and A. Pressley, A Guide to Quantum Groups, Cambridge University Press, Cambridge, 1994.
  3. T. J. Hodges and T. Levasseur, Primitive ideals of $C_q$[SL(3)], Comm. Math. Phys. 156 (1993), no. 3, 581–605.
  4. T. J. Hodges, T. Levasseur, and M. Toro, Algebraic structure of multiparameter quantum groups, Adv. Math. 126 (1997), no. 1, 52-92. https://doi.org/10.1006/aima.1996.1612
  5. J. Hong and S.-J. Kang, Introduction to Quantum Groups and Crystal Bases, Graduate Studies in Mathematics, 42. American Mathematical Society, Providence, RI, 2002.
  6. J. E. Humphreys, Linear Algebraic Groups, Graduate Texts in Mathematics, vol. 21, Springer-Verlag Inc., thirding printing, 1987.
  7. J. C. Jantzen, Lectures on Quantum Groups, Graduate Studies in Mathematics, vol. 6, American Mathematical Society, Providence, 1996.
  8. A. Joseph, Quantum Groups and Their Primitive Ideals, A series of modern surveys in mathematics, vol. 3. Folge.Band 29, Springer-Verlag, Berlin, 1995.
  9. L. I. Korogodski and Y. S. Soibelman, Algebras of Functions on Quantum Groups. Part I., Mathematical Surveys and Monographs, 56. American Mathematical Society, Providence, RI, 1998.
  10. L. A. Lambe and D. E. Radford, Introduction to the Quantum Yang-Baxter Equation and Quantum Groups: an algebraic approach, Mathematics and its Applications, 423. Kluwer Academic Publishers, Dordrecht, 1997.

Cited by

  1. Poisson Hopf algebra related to a twisted quantum group vol.45, pp.1, 2017, https://doi.org/10.1080/00927872.2016.1175451