Novel Gene Delivery Carrier Using Chitosan-Lipoic Acid Comb-Type Copolymer

키토산-리포산 빗살형 공중합체를 이용한 유전자 전달체 개발

  • Kwon, Sang-Kyoo (Department of Applied Chemistry and Biological Engineering, Chungnam National University) ;
  • Kim, Sung-Wan (Center for Controlled Chemical Delivery, University of Utah) ;
  • Kim, Young-Jin (Department of Applied Chemistry and Biological Engineering, Chungnam National University)
  • 권상규 (충남대학교 공과대학 바이오응용화학과) ;
  • 김성완 (유타대학교 약학대학 CCCD) ;
  • 김영진 (충남대학교 공과대학 바이오응용화학과)
  • Received : 2010.04.23
  • Accepted : 2010.06.26
  • Published : 2010.11.25

Abstract

Natural chitosan has high molecular weight and the poor solubility in water. Water-soluble chitosan with low molecular weight was prepared by the hydrolysis method. In order to develop an efficient gene delivery carrier, chitosan was conjugated with lipoic acid to form the comb-type copolymer. The copolymer with the amphiphilic property formed the self-assembled nanoparticles in the aqueous solution. The average size of nanoparticles was 217.6 nm and the average size of nanoparticles/DNA complex was 170 nm. New chitosan-lipoic acid copolymer showed the low cytotoxicity and 10 times higher transfection efficiency than that of the pure chitosan.

물에 잘 녹지 않는 고분자량의 키토산을 가수분해하여 수용성을 갖는 저분자량 키토산을 제조하였다. 키토산을 효율적인 유전자 전달체로 개발하기 위하여 항산화제의 일종인 리포산과 결합하여 빗살 형태의 공중합체를 제조하였다. 양친성을 가지는 공중합체는 수용액 상에서 자기조립을 하여 나노입자를 형성하였다. 나노입자의 평균크기는 217.6 nm이었고 유전자와 복합체를 이루었을 때의 평균크기는 170 nm로 나타났다. 새롭게 만들어진 키토산-리포산 공중합체는 낮은 세포독성을 나타내었고 순수한 키토산에 비하여 10배 정도 높은 형질 발현효율을 보여주었다.

Keywords

References

  1. M. Ogris and E. Wagner, Somat. Cell Mol. Genet., 27, 85 (2002). https://doi.org/10.1023/A:1022988008131
  2. R. Kircheis, T. Blessing, S. Brunner, L. Wightman, and E. Wagner, J. Control. Release, 72, 165 (2001). https://doi.org/10.1016/S0168-3659(01)00272-3
  3. I. J. Chung, J. Appl. Pharm., 15, 274 (2007).
  4. D. W. Emery, Clini. Appl. Immunol., 4, 411 (2004). https://doi.org/10.1016/j.cair.2004.05.001
  5. Y. K. Choi, J. G. Park, Y. S. Kim, and S. G. Paik, Bulletin of Biotechnology CNU, 8, 10 (2002).
  6. J. Johnston and F. Baylis, A Review of Recent Events Clinical Researcher, 4, 11 (2004).
  7. P. L. Felgner and G. M. Ringold, Nature, 337, 387 (1989). https://doi.org/10.1038/337387a0
  8. W. J. Kim and S. W. Kim, Macromol. Res., 15, 100 (2007). https://doi.org/10.1007/BF03218760
  9. A. Ziegler, G. H. Luedke, D. Fabbro, K. H. Altmann, R. A. Stahel, and U. Zangemeister-Wittke, J. Natl. Cancer Inst., 89, 1027 (1997). https://doi.org/10.1093/jnci/89.14.1027
  10. V. M. Ramosa, N. M. Rodriguezb, M. S. Rodrigueza, A. Herasc, and E. Agullo, Carbohyd. Polym., 51, 425 (2003). https://doi.org/10.1016/S0144-8617(02)00211-4
  11. M. G. Jeong, D. S. Kim, Y. H. Choi, and H. S. Lim, Polymer (Korea), 28, 253 (2004).
  12. S. W. Kang, S. J. Lee, and D. S. Kim, Korean Diabetes, 32, 21 (2008). https://doi.org/10.4093/kdj.2008.32.1.21
  13. M. A. Croyle, H. T. Le, K. D. Linse, V. Cerullo, G. Toietta, A. Beaudet, and L. Pastore, Gene Therapy, 12, 579 (2005). https://doi.org/10.1038/sj.gt.3302441
  14. E. J. Park and Y. J. Kim, Polymer(Korea), 32, 544 (2008).