Preparation and Thermal Properties of Aliphatic Network Polyester-Silica Composites

지방족 가교 폴리에스테르-실리카 복합재료의 제조 및 열적특성

  • Oh, Chang-Jin (Department of Polymer Science, Kyungpook National University) ;
  • Park, Su-Dong (Korea Electrotechnology Research Institute) ;
  • Han, Dong-Cheul (Department of Polymer Science, Kyungpook National University) ;
  • Kwak, Gi-Seop (Department of Polymer Science, Kyungpook National University)
  • Received : 2010.04.05
  • Accepted : 2010.06.14
  • Published : 2010.09.25

Abstract

The hybrid composites of aliphatic polyester-silica were prepared via a sol-gel reaction and their potential application using as a buffer coating layer in the thermoelectric device were investigated. When aliphatic polyesters were thermally treated at a high temperature of $240^{\circ}C$, the polymer showed an increases in thermal degradation temperature by $30{\sim}90^{\circ}C$ according to the thermal treatment time. The polyester-silica composites showed an increases in thermal degradation temperature by $30{\sim}50^{\circ}C$ according to the content of the added silica. Polyester-silica composite showed neither discoloration nor change in optical properties because Knoevenagel condensation reaction was hindered by silica structure. The thermal conductivity of the composites increased linearly according to the content of added silica.

졸-젤법을 이용한 실리카를 지방족 폴리에스테르 주사슬에 가교구조로 도입한 하이브리드 복합재료를 합성하여 열전소자의 버퍼코트층으로의 적용가능성을 검토하였다. 고분자 기지로 사용된 폴리에스테르는 $240^{\circ}C$의 고온에서 열처리 시간에 따라 $30{\sim}90^{\circ}C$ 정도 열분해개시 온도가 증가하였고, 폴리에스테르-실리카 복합재료는 실리카의 첨가 비율에 따라 $30{\sim}50^{\circ}C$ 정도 열분해 개시온도가 증가하였다. 폴리에스테르-실리카 복합재료는 실리카가 Knoevenagel 축합반응을 방해하는 요소로 작용하여 폴리에스테르에 비해 열처리후에도 변색이 일어나지 않았고, 광학특성 변화가 작았다. 이들 복합재료의 열전도도는 실리카의 첨가량에 따라 선형적으로 증대되었다.

Keywords

Acknowledgement

Supported by : 지식경제부

References

  1. C. Saujanya and S. Radhakrishnan, Polymer, 42, 6723 (2001). https://doi.org/10.1016/S0032-3861(01)00140-9
  2. Y. T. Lee, Polym. Sci. Tech., 4, 444 (1993).
  3. Z. Hua, W. Shisahan, and S. Jian, Chem. Rev., 108, 3893 (2008). https://doi.org/10.1021/cr068035q
  4. S. Sakka and K. Kamiya, J. Non-Cryst. Solids, 42, 403 (1980). https://doi.org/10.1016/0022-3093(80)90040-X
  5. H. Tsuji, Y. Echizen, and Y. Nishimura, Polym. Degrad. Stabil., 91, 1128 (2006). https://doi.org/10.1016/j.polymdegradstab.2005.07.007
  6. Y. Ikada and H. Tsugi, Macromol. Rapid Commun., 21, 117 (2000). https://doi.org/10.1002/(SICI)1521-3927(20000201)21:3<117::AID-MARC117>3.0.CO;2-X
  7. S. H. Lee, Y. K. Han, Y. H. Kim, and S. H. Kim, J. Polym. Sci. Part A : Polym. Chem., 40, 567 (1998).
  8. T.-G. Kang and Y.-K. Han, Polymer(Korea), 29, 314 (2005).
  9. J. Kim, H. J. Choi, D. C. Lee, J. S. Yoon, I.-J. Chin, and K. H. Lee, Polymer(Korea), 24, 358 (2000).
  10. D.-K. Kim, Y.-S. Shin, S.-S. Im, Y.-T. Yoo, and J.-R. Huh, Polymer(Korea), 20, 431 (1996).
  11. G. Kwak and M. Fujick, Macromolecules, 37, 2021 (2004). https://doi.org/10.1021/ma035679g
  12. G. Kwak, A. Takagi, and M. Fujiki, Macromolecules, 38, 69 (2005). https://doi.org/10.1021/ma0491558
  13. S. Jeong, G. Kwak, I. T. Jung, D.-H. Lee, H.-J. Roh, and K.-B. Yoon, Polymer(Korea), 32, 56 (2009).
  14. T. J. Seebeck, "Magnetische Polarisation der Metalle und Erze durch Temperatur-Differenz", Abhandlungen der Preussischen Akad, der Wissenshaften zu Berlin, p.265 (1822).
  15. G. S. Nolas, J. Sharp, and H. J. Goldsmid, Thermoelectrics: Basic Principles and New Materials Developments, Springer Series in Materials Science, Springer-Verlag Berlin, Germany, p 1 (2001).
  16. A. F. Loffe, Semiconductor Thermoelements and Thermoelectric Cooling, Inforsearch Ltd, London, 1957.
  17. K.-B. Yoon, S. Jeong, and G. Kwak, Macromol. Rapid Commun., 28, 1231 (2007). https://doi.org/10.1002/marc.200700134
  18. E. M. Arnett, S. Maroldo, S. L. Schilling, and J. A. Harrelson, J. Am. Chem. Soc., 106, 6759 (1984). https://doi.org/10.1021/ja00334a049
  19. G. Jones, Organic Reactions(New York), 15, 204 (1967).
  20. L. F. Tietze and U. Beifuss, in Comprehensive Organic Synthesis, B. M. Trost and I. Fleming, Editors, Pergamon Press, New York, Vol. 2, p 341 (1991).
  21. T. Laue and A. Plagens, Named Organic Reactions, 2nd ed., John Wiley & Sons Publishers, England, p 176 (2005).
  22. Y. Xu, D. D. L. Chung, and M. Cathleen, Compos. Part A, 32, 1749 (2001). https://doi.org/10.1016/S1359-835X(01)00023-9
  23. P. Dashora and G. Gupta, Polymer, 37, 231 (1996). https://doi.org/10.1016/0032-3861(96)81092-5
  24. T. M. Tritt and M. A. Subramanian, MRS Bulletin, 31, 188 (2006). https://doi.org/10.1557/mrs2006.44