Abstract
Purpose: The purpose of this study is to delineate the optimal time of venous revascularization for preventing the flap necrosis due to venous occlusion, and to clarify the usefulness of tissue oxygen pressure ($TcpO_2$) in the determination of the point of time for venous revascularization. Methods: Thirty-six, $3{\times}3\;cm$ sized epigastric island flap was elevated in left abdomen of male Sprague-Dawley rat weighing 250 gram. Flaps were randomly assigned to six groups of six flaps according to the duration of venous occlusion with microvascular clamp; 10 minutes in the group I as the control, 60 minutes in the group II, 2 hours in the group III, 3 hours in the group IV, 4 hours in the group V, and 6 hours in the group VI, respectively. Just before removal of clamp after flap was reposed in situ, the ratio of $TcpO_2$ (tissue oxygen pressure) of the island flap to that of right abdomen was calculated in each group, and tissue specimen was harvested from the distal area of the flap for histological evaluation of vascular change. Five days later, survival area of the flap was estimated, and evaluated the correlation between the tissue oxygen pressure and the rate of flap survival. Results: The $TcpO_2$ and the survival rate of flap were decreased proportionally with the duration of venous occlusion. The ratio of the $TcpO_2$ of the flap is decreased abruptly to below sixty percentile compared to the $TcpO_2$ of normal tissue, and the survived area of the flap is decreased to nine-tenth of the designed size after three hours of total venous occlusion. Histologically, the number of congested vessels was increased according to venous occluded time, and proportionally increased after 3-hours of occlusion significantly. Conclusion: There is a close correlation between the $TcpO_2$ and the survival rate of flaps according to the duration of venous occlusion. Therefore, the $TcpO_2$ represents the hemodynamic changes within the flap, and thought to be an alternative effective tool in the flap monitoring for venous revascularization.