DOI QR코드

DOI QR Code

SOLVING A MATRIX POLYNOMIAL BY NEWTON'S METHOD

  • Han, Yin-Huan (DEPARTMENT OF MATHEMATICS, PUSAN NATIONAL UNIVERSITY) ;
  • Kim, Hyun-Min (DEPARTMENT OF MATHEMATICS, PUSAN NATIONAL UNIVERSITY)
  • Received : 2010.05.26
  • Accepted : 2010.06.03
  • Published : 2010.06.25

Abstract

We consider matrix polynomial which has the form $P_1(X)=A_oX^m+A_1X^{m-1}+...+A_m=0$ where X and $A_i$ are $n{\times}n$ matrices with real elements. In this paper, we propose an iterative method for the symmetric and generalized centro-symmetric solution to the Newton step for solving the equation $P_1(X)$. Then we show that a symmetric and generalized centro-symmetric solvent of the matrix polynomial can be obtained by our Newton's method. Finally, we give some numerical experiments that confirm the theoretical results.

Acknowledgement

Supported by : Pusan National University

References

  1. Attahiru Sule Alfa, Combinded elapsed time and matrix-analytic method for the discrete time GI/G/I and GIX/G/I systems, Qucucing Systems, 45 (2003), 5-25.
  2. N. G. Bean, L. Bright, G. Latouche, C. E. M. Pearce, P. K. Pollett, and P. G. Taylor, The quasi-stationary behavior of quasi-birth-death processes, The Annals of Applied Probability, 7(1) (1997), 134-155. https://doi.org/10.1214/aoap/1034625256
  3. G. J. Butler, C. R. Johnson, and H. Wolkowicz, Nonnegative solutions of a quadratic matrix equation arising from comparison theorems in ordinary, SIAM J. Alg. Disc. Meth., 6(1) (1985), 47-53. https://doi.org/10.1137/0606005
  4. H. Dai, On the symmetric solutions of linear matrix equations, Linear Algebra and Appl., 131 (1990), 1-7. https://doi.org/10.1016/0024-3795(90)90370-R
  5. George J. Davis, Numerical solution of a quadratic matrix equation, SIAM J. Sci. Stat. Comput., 2(2) (1981), 164-175. https://doi.org/10.1137/0902014
  6. Mehdi Dehghan and Masoud Hajarian, Finite iterative algorithms for the reflexive and anti-reflexive solutions of the matrix equation $A_1X_1B_1\:+\:A_2X_2B_2$ = C, Mathematical and Computer Modeling, 49 (2009), 1937-1959. https://doi.org/10.1016/j.mcm.2008.12.014
  7. J. E. Dennis, Jr., J. F. Traub, and R. P. Weber, The algebraic theory of matrix polynomials, SIAM J. Numer. Anal., 13(6) (1976), 831-845. https://doi.org/10.1137/0713065
  8. J. E. Dennis, Jr., J. F. Traub, and R. P. Weber, Algorithms for solvents of matrix polynomials, SIAM J. Numer. Anal., 15(3) (1978), 523-533. https://doi.org/10.1137/0715034
  9. I. Gohberg, P. Lancaster, and L. Rodman, Matrix Polynomials, Academic Press, New York, 1982.
  10. Nicholas J. Higham and Hyun-Min Kim, Numerical analysis of a quadratic matrix equation, IMA J. Numer. Anal., 20(4) (2000), 499-519. https://doi.org/10.1093/imanum/20.4.499
  11. Chu K.E, Symmetric solutions of the linear matrix equations by matrix decompositions, Linear Algebra and Appl., 119 (1989), 35-50. https://doi.org/10.1016/0024-3795(89)90067-0
  12. Hyun-Min Kim, Convergence of newton's method for solving a class of quadratic matrix equations, Honam Mathematical Journal, 30(2) (2008), 399-409. https://doi.org/10.5831/HMJ.2008.30.2.399
  13. W. Kratz and E. Stickel, Numerical solution of matrix polynomial equations by Newton's method, IMA J. Numer. Anal., 7 (1987), 355-369. https://doi.org/10.1093/imanum/7.3.355
  14. P. Lancaster and M. Tismenetsky, The Theory of Matrices with Applications, 2nd ed, Academic Press, New York, 1982.
  15. Peter Lancaster, Lambda-Matrices and Vibrating Systems, Pergamon Press, Oxford, 1966.
  16. Maolin Liang, Lifang Dai, and Sanfu Wang, An iterative method for (R,S)-symmetric solution of matrix equation $A{\times}B$ = C, Sci. Magna., 4 (2008) , 60-70.
  17. Maolin Liang, Chuanhua You, and Lifang Dai, An efficient algorithm for the generalized centro-symmetric solution of matrix equation $A{\times}B$ = C, Numer. Algor., 44 (2007), 173-184. https://doi.org/10.1007/s11075-007-9097-z
  18. Cleve Moler and Peter J. Costa, Symbolic Math Toolbox Version 2: User's Guide, The MathWorks, Inc, Natick, MA, USA, 1998.
  19. Jong Hyeon Seo and Hyun-Min Kim, Solving matrix polynomials by Newton's method with exact line searches, J. KSIAM, 12 (2008), 55-68.
  20. X. Y. Peng, X. Y. Hu, and L. Zhang, An iterative method for symmetric slutions and the optimal approximation solution of the matrix equation $A{\times}B$ = C, Appl. Math. Comput., 160 (2005), 763-777. https://doi.org/10.1016/j.amc.2003.11.030