Goodness-of-fit test for the half logistic distribution based on multiply Type-II censored samples

  • Kang, Suk-Bok (Department of Statistics, Yeungnam University) ;
  • Cho, Young-Seuk (Department of Statistics, Pusan National University) ;
  • Han, Jun-Tae (National Health Insurance Policy Research Institute, National Health Insurance Corporation) ;
  • SaKong, Jin (Department of Economics, Hanyang University)
  • Received : 2010.01.09
  • Accepted : 2010.03.19
  • Published : 2010.03.31

Abstract

In this paper, we develop four modified empirical distribution function (EDF) type tests using approximate maximum likelihood estimators for the half-logistic distribution based on multiply Type-II censored samples. We also propose modified normalize sample Lorenz curve polt and new test statistics. We compare the above test statistics in the sense of the power for various censored samples. We present an example to illustrate this method.

Keywords

References

  1. Balakrishnan, N. (1985). Order statistics form the half logistic distribution. Journal of Statistical Computation and Simulation, 20, 287-309. https://doi.org/10.1080/00949658508810784
  2. Balakrishnan, N. and Puthenpura, S. (1986). Best linear unbiased estimators of location and scale parameters of the half logistic distribution. Journal of Statistical Computation and Simulation, 25, 193-204. https://doi.org/10.1080/00949658608810932
  3. Balakrishnan, N. and Wong, K. H. T. (1991). Approximate MLEs for the location and scale parameters of the half logistic distribution with type-II right censoring. IEEE Transactions on Reliability, 40, 140-145. https://doi.org/10.1109/24.87114
  4. Cho, Y. S., Lee, J. Y. and Kang, S. B. (1999). A study on distribution based on the transformed Lorenz curve. The Korean Journal of Applied Statistics, 12, 153-163.
  5. D'Agostino and Stephens, M. A. (1986). Goodness-of-fit techniques, New York, Marcel Dekker.
  6. Kang, S. B. and Cho, Y. S. (2001). A study on distribution based on the normalized sample Lorenz curve. The Korean Communications in Statistics, 8, 185-192.
  7. Kang, S. B., Cho, Y. S. and Han, J. T. (2008). Goodness-of-fit test for the extreme value distribution based on multiply Type-II censored samples. Journal of the Korean Data & Information Science Society, 19, 1441-1448.
  8. Kang, S. B. and Lee, S. K. (2006). Test for the exponential distribution based on multiply Type-II censored samples. The Korean Communications in Statistics, 13, 537-550. https://doi.org/10.5351/CKSS.2006.13.3.537
  9. Kang, S. B. and Park, Y. K. (2005). Estimation for the half-logistic distribution based on multiply Type-II censored samples. Journal of the Korean Data & Information Science Society, 16, 145-156.
  10. Kim, B. Y. (1993). A Goodness-of-fit test for exponentiality with censored samples. The Korean Journal of Applied Statistics, 6, 289-302.
  11. Lawless, J. F. (1982). Statistical models and methods for lifetime data, New York, John Wiley & Sons.
  12. Lin, C. T., Huang, Y. L. and Balakrishnan, N. (2008). A new method for goodness-of-fit testing based on Type-II right censored samples. IEEE Transactions on Reliability, 57, 633-642. https://doi.org/10.1109/TR.2008.2005860
  13. Stephens, M. A. (1974). EDF Statistics for goodness of fit and some comparisons. Journal of American Statistical Association, 69, 730-737. https://doi.org/10.2307/2286009
  14. Wilk, M. B. and Gnanadesikan, R. (1968). Probability plotting methods for the analysis of data. Biometrika, 55, 1-17.
  15. Woodruff, B. W., Moore, A. H., Dunne, E. J. and Cortes, R. (1983). A modified Kolmogorov-Smirnov test for Weibull distributions with unknown location and scale parameters. IEEE Transactions on Reliability, 57, 633-642.