References
- Burt, J. M. Jr., 1970. Monte Carlo techniques for stochastic network analysis, In Winter Simulation Conference, No. 9, 146-153. New York, United States.: IEEE.
- Burt, J. M. and M. B. Garman, JR., 1971. Conditional Monte Carlo: A simulation technique for stochastic network analysis, In Management Science 8(3): 207-217. https://doi.org/10.1287/mnsc.18.3.207
- Chen, S. and T. Chang, 2001. Finding multiple possible critical path using fuzzy PERT, In Institute of Electrical and Electronics Engineers 31(6): 930-937. https://doi.org/10.1109/3477.969496
- Chen, Y., Dan R. and Kwei T., 1997. Critical path in an activity network with time constraints, In European Journal of Operational Research 100(1): 122-133. https://doi.org/10.1016/S0377-2217(96)00140-3
- Dodin, B., 1984. Determining the K most critical paths in PERT networks, In Operator Research Society of America 32(4): 859-877. https://doi.org/10.1287/opre.32.4.859
- Dodin, B. and S. E. Elmaghraby 1985. Approximating the distribution functions in stochastic networks, In Computer and Operation Research 12(3): 251-264. https://doi.org/10.1016/0305-0548(85)90024-3
- Dodin, B. and M. Sirvanci., 1990. Stochastic networks and the extreme value distribution, In Computer and Operation Research 17(4): 397-409. https://doi.org/10.1016/0305-0548(90)90018-3
- Elmaghraby S. E., 2000. On criticality and sensitivity in activity networks, In European Journal of Operational Research 127(2): 220-238. https://doi.org/10.1016/S0377-2217(99)00483-X
- Fatemi Ghomi, S. M. T. and E. Teimouri, 2001. Path critical index and activity critical index in PERT networks, In European Journal of Operational Research141(1): 147-152. https://doi.org/10.1016/S0377-2217(01)00268-5
- Fulkerson, D. R., 1962. Expected critical path length in PERT networks, In Operations research 10(6): 808-817. https://doi.org/10.1287/opre.10.6.808
- Gong, D. and J. E. Rowings Jr, 1995. Calculation of safe float use in risk-analysis-oriented network scheduling, In International Journal of Project Management 13(3): 187-194. https://doi.org/10.1016/0263-7863(94)00004-V
- Lee, J., H. Yi, M. Park and J. Lee, 2005. An investigation of project completion time estimation method in PERT network for planning and management in large-scale systems, In Proc. of the Korean Society of Agricultural Engineerings Conference 695-699.
- Liang G. and T. Han, 2004. Fuzzy critical path for project network, In Information and Management Science 15(4): 29-40.
- Malcom, D. G., J. H. Roseboom, C. E. Clack and W. Fazar, 1959. Application of a technique for research and development program Evaluation, In OperationsResearch 7(5): 646-669. https://doi.org/10.1287/opre.7.5.646
- Ringer, L. J., 1969. Numerical operators for statistical PERT critical path analysis, In Management Science 16(2): 136-143 https://doi.org/10.1287/mnsc.16.2.B136
- Ringer, L. J., 1971. A statistical theory for PERT in which completion times of activities are inter-dependent, Management Science 17(11): 717-723. https://doi.org/10.1287/mnsc.17.11.717
- Robillard, P. and M. Trahan, 1977. The completion time of PERT networks, In Operations Research 25(1): 15-29. https://doi.org/10.1287/opre.25.1.15
- Sigal, C. E., A. A. B. Pritsker and J. J. Solberg, 1979. The use of cutsets in Monte Calros analysis of stochastic network, In Mathematic and Computers in Simulation 21(4): 376-384. https://doi.org/10.1016/0378-4754(79)90007-7
- Soroush H. M., 1994. The most critical path in a PERT network, In Operational Research Society 45(3): 287-300. https://doi.org/10.2307/2584163
- Van Slyke, R. M., 1963. Monte Carlo method and the PERT problem, In Operations Research and the Management Sciences 11(5): 839-860. https://doi.org/10.1287/opre.11.5.839
- Williams T. M., 1992. Criticality in stochastic networks, In Operational Research Society 43(4): 353-357. https://doi.org/10.1057/jors.1992.50
- Yang, H. and Y. Chen, 2000. Finding the critical path in an activity network with time-switch constraints, In European Journal of Operational Research 120: 603-613. https://doi.org/10.1016/S0377-2217(98)00390-7
- Yao, M. and W. Chu, 2007. A new approximation algorithm for obtaining the probability distribution function for project complement time, In Computers and Mathematics with Applications 54(2): 282-295. https://doi.org/10.1016/j.camwa.2007.01.036
Cited by
- Reliability Analysis of the Non-normal Probability Problem for Limited Area using Convolution Technique vol.55, pp.5, 2013, https://doi.org/10.5389/KSAE.2013.55.5.049