Abstract
The use of airborne LiDAR data obtained by airborne laser scanners has increased in the field of spatial information such as building modeling. LiDAR data consist of irregularly distributed 3D coordinates and lack visual and semantic information. Therefore, LiDAR data processing is complicate. This study suggested a method of LiDAR data segmentation using roof surface patches from aerial images. Each segmented patch was modeled by analyzing geometric characteristics of the LiDAR data. The optimal functions could be determined with segmented data that fits various shapes of the roof surfaces as flat and slanted planes, dome and arch types. However, satisfiable segmentation results were not obtained occasionally due to shadow and tonal variation on the images. Therefore, methods to remove unnecessary edges result in incorrect segmentation are required.
항공 레이저 스캐너 시스템은 3차원 공간좌표를 획득할 수 있는 센서로서 획득된 LiDAR 데이터는 공간 정보 분야에서 건물 모델링에 많이 이용되고 있다. 또한 LiDAR데이터는 불규칙한 좌표로 이루어져 있으며 시각적인 정보가 결여되어 있으므로 데이터 처리가 복잡하다. 본 연구에서는 디지털 항공영상에서 생성된 단위 요소면을 이용하여 LiDAR 데이터를 분할하고 분할된 데이터를 기반으로 다양한 지붕의 형태를 분석하여 평면, 곡면(돔형, 아치형)등으로 판별하고 건물 모델링을 위한 최적의 함수를 결정하였다. 실제 영상에서는 그림자. 색조변화 등에 의해 정확한 데이터 분할에 문제점이 발생할 수 있으므로 이를 보완하기 위하여 영상에서 경계선 추출 결과 불필요한 경계선들은 제거할 수 있는 방법이 요구된다.