Efficacy Evaluation of Tissue Inhibitor of Metalloproteinases-2 and Endostatin on Angiogenesis

Tissue Inhibitor of Metalloproteinases-2와 Endostatin의 혈관신생 제어 효능 평가

  • Kim, Soo-Hyeon (Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University) ;
  • Cho, Young-Rak (Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University) ;
  • Yoon, Hyun-Jae (Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University) ;
  • Ko, Hee-Young (Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University) ;
  • Kim, Pyeung-Hyeun (Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University) ;
  • Seo, Dong-Wan (Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University)
  • 김수현 (강원대학교 의생명과학대학 분자생명과학과) ;
  • 조영락 (강원대학교 의생명과학대학 분자생명과학과) ;
  • 윤현재 (강원대학교 의생명과학대학 분자생명과학과) ;
  • 고희영 (강원대학교 의생명과학대학 분자생명과학과) ;
  • 김평현 (강원대학교 의생명과학대학 분자생명과학과) ;
  • 서동완 (강원대학교 의생명과학대학 분자생명과학과)
  • Received : 2010.09.10
  • Accepted : 2010.11.10
  • Published : 2010.12.31

Abstract

Therapeutic manipulation of angiogenesis, the formation of new vascular sprouts from existing capillaries, is one of the promising strategies for treatment of human diseases such as cancer, arthritis, and cardiovascular disorder. In the present study, we examined the effects and molecular mechanism of tissue inhibitor of metalloproteinases-2 (TIMP-2) and endostatin on fibroblast growth factor-2 (FGF-2)-stimulated endothelial cell proliferation, migration and adhesion in vitro, and angiogenesis in vivo. TIMP-2 and endostatin showed potent anti-angiogenic activity in vitro and in vivo. These effects appear to be mediated through different angiogenic signaling pathways. Collectively, our findings demonstrate that TIMP-2 and endostatin strongly inhibit FGF-2-induced angiogenic responses, and the establishment of fast and reproducible evaluation system in vitro and in vivo for the development of anti-angiogenic biomaterials and therapeutics.

Keywords

References

  1. Carmeliet, P. : Mechanisms of angiogenesis and arteriogenesis. Nat. Med. 6, 389 (2000). https://doi.org/10.1038/74651
  2. Carmeliet, P. and Jain, R. K. : Angiogenesis in cancer and other diseases. Nature 407, 249 (2000). https://doi.org/10.1038/35025220
  3. Blagosklonny, M. V. : Antiangiogenic therapy and tumor progression. Cancer. Cell. 5, 13 (2004). https://doi.org/10.1016/S1535-6108(03)00336-2
  4. Kerbel, R. and Folkman, J. : Clinical translation of angiogenesis inhibitors. Nat. Rev. Cancer 2, 727 (2002). https://doi.org/10.1038/nrc905
  5. Sternlicht, M. D. and Werb, Z. : How matrix metalloproteinases regulate cell behavior. Annu. Rev. Cell. Dev. Biol. 17, 463 (2001). https://doi.org/10.1146/annurev.cellbio.17.1.463
  6. Stetler-Stevenson, W. G. : Matrix metalloproteinases in angiogenesis: a moving target for therapeutic intervention. J. Clin. Invest. 103, 1237 (1999). https://doi.org/10.1172/JCI6870
  7. Baker, A. H., Edwards, D. R. and Murphy, G. : Metalloproteinase inhibitors: biological actions and therapeutic opportunities. J. Cell Sci. 115, 3719 (2002). https://doi.org/10.1242/jcs.00063
  8. Hoegy, S. E., Oh, H. R., Corcoran, M. L. and Stetler- Stevenson, W. G. : Tissue inhibitor of metalloproteinases-2 (TIMP-2) suppresses TKR-growth factor signaling independent of metalloproteinase inhibition. J. Biol. Chem. 276, 3203 (2001). https://doi.org/10.1074/jbc.M008157200
  9. Seo, D. W., Li, H., Guedez, L., Wingfield, P. T., Diaz, T., Salloum, R., Wei, B. Y. and Stetler-Stevenson, W. G. : TIMP-2 mediated inhibition of angiogenesis : an MMP-independent mechanism. Cell. 114, 171 (2003). https://doi.org/10.1016/S0092-8674(03)00551-8
  10. Stetler-Stevenson, W. G. : Tissue inhibitors of metalloproteinases in cell signaling: metalloproteinase-independent biological activities. Sci. Signal. 1, re6 (2008). https://doi.org/10.1126/scisignal.127re6
  11. Wingfield, P. T., Sax, J. K., Stahl, S. J., Kaufman, J., Palmer, I., Chung, V., Corcoran, M. L., Kleiner, D. E. and Stetler- Stevenson, W. G. : Biophysical and functional characterization of full-length, recombinant human tissue inhibitor of metalloproteinases-2 (TIMP-2) produced in Escherichia coli. Comparison of wild type and amino-terminal alanine appended variant with implications for the mechanism of TIMP functions. J. Biol. Chem. 274, 21362 (1999). https://doi.org/10.1074/jbc.274.30.21362
  12. Schwartz, M. A. : Integrin signaling revisited. Trends Cell Biol. 11, 466 (2001). https://doi.org/10.1016/S0962-8924(01)02152-3
  13. Hynes, R. O. : Integrins: bidirectional, allosteric signaling machines. Cell 110, 673 (2002). https://doi.org/10.1016/S0092-8674(02)00971-6
  14. Nyberg, P., Xie, L. and Kalluri, R. : Endogenous inhibitors of angiogenesis. Cancer Res. 65, 3967 (2005). https://doi.org/10.1158/0008-5472.CAN-04-2427
  15. Dixelius, J., Cross, M., Matsumoto, T., Sasaki, T., Timpl, R. and Claesson-Welsh, L. : Endostatin regulates endothelial cell adhesion and cytoskeletal organization. Cancer Res. 62, 1944 (2002).
  16. Marneros, A. G. and Olsen, B. R. : Physiological role of collagen XVIII and endostatin. FASEB J. 19, 716 (2005). https://doi.org/10.1096/fj.04-2134rev
  17. Wickstrom, S. A., Alitalo, K. and Keski-Oja, J. : An endostatin-derived peptide interacts with integrins and regulates actin cytoskeleton and migration of endothelial cells. J. Biol. Chem. 279, 20178 (2004). https://doi.org/10.1074/jbc.M312921200
  18. Kim, Y. M., Hwang, S., Kim, Y. M., Pyun, B. J., Kim, T. Y., Lee, S. T., Gho, Y. S. and Kwon, Y. G. : Endostatin blocks vascular endothelial growth factor-mediated signaling via direct interaction with KDR/Flk-1. J. Biol. Chem. 277, 27872 (2002). https://doi.org/10.1074/jbc.M202771200
  19. Folkman, J. : Antiangiogenesis in cancer therapy-endostatin and its mechanisms of action. Exp. Cell Res. 312, 594 (2006). https://doi.org/10.1016/j.yexcr.2005.11.015
  20. Lee, S. J., Jang, J. W., Kim, Y. M., Lee, H. I., Jeon, J. Y., Kwon, Y. G. and Lee, S. T. : Endostatin binds to the catalytic domain of matrix metalloproteinase-2. FEBS Lett. 519, 147 (2002). https://doi.org/10.1016/S0014-5793(02)02742-4
  21. Oh, J., Seo, D. W., Diaz, T., Wei, B., Ward, Y., Ray, J. M., Morioka, Y., Shi, S., Kitayama, H., Takahashi, C., Noda, M. and Stetler-Stevenson, W. G. : Tissue inhibitors of metalloproteinase 2 inhibits endothelial cell migration through increased expression of RECK. Cancer Res. 64, 9062 (2004). https://doi.org/10.1158/0008-5472.CAN-04-1981
  22. Guedez, L., Rivera, A. M., Salloum, R., Miller, M. L., Diegmueller, J. J., Bungay, P. M. and Stetler-Stevenson, W. G. : Quantitative assessment of angiogenic responses by the directed in vivo angiogenesis assay. Am. J. Pathol. 162, 1431 (2003). https://doi.org/10.1016/S0002-9440(10)64276-9
  23. Seo, D. W., Li, H., Qu, C. K., Oh, J., Kim, Y. S., Diaz, T., Wei, B. Y., Han, J. W. and Stetler-Stevenson, W. G. : Shp-1 mediates the anti-proliferative activity of tissue inhibitor of metalloproteinase-2 in human microvascular endothelial cells. J. Biol. Chem. 281, 3711 (2006). https://doi.org/10.1074/jbc.M509932200
  24. Zhang, H. and Issekutz, A. C. : Down-modulation of monocyte transendothelial migration and endothelial adhesion molecule expression by fibroblast growth factor: reversal by the antiangiogenic agent SU6668. Am. J. Pathol. 160, 2219 (2002). https://doi.org/10.1016/S0002-9440(10)61169-8
  25. Murphy, A. N., Unsworth, E. J. and Stetler-Stevenson, W. G. : Tissue inhibitor of metalloproteinases-s inhibits bFGF-induced human microvascular endothelial cell proliferation. J. Cell. Physiol. 157, 351 (1993). https://doi.org/10.1002/jcp.1041570219
  26. Seo, D. W., Kim, S. H., Eom, S. H., Yoon, H. J., Cho, Y. R., Kim, P. H., Kim, Y. K., Han, J. W., Diaz, T., Wei, B. Y. and Stetler- Stevenson, W. G. : TIMP-2 disrupts FGF-2-induced downstream signaling pathways. Microvasc. Res. 76, 145 (2008). https://doi.org/10.1016/j.mvr.2008.07.003
  27. Chang, Z., Choon, A. and Friedl, A. : Endostatin binds to blood vessels in situ independent of heparan sulfate and does not compete for fibroblast growth factor-2 binding. Am. J. Pathol. 155, 71 (1999). https://doi.org/10.1016/S0002-9440(10)65101-2