Protective Effect of the 70% Ethanolic Extract of Alpinia officinarum and Galangin Against $KBrO_3$-induced DNA and Chromosomal Damage in Mice

Galangin 및 양강추출물의 $KBrO_3$ 유도 DNA 및 염색체 손상에 대한 보호효과

  • Received : 2010.07.05
  • Accepted : 2010.09.30
  • Published : 2010.12.31

Abstract

The aim of this study was to evaluate the in vivo effect of galangin and the 70% ethanolic extract of Alpinia officinarum (AO) toward $KBrO_3$-induced DNA and chromosomal damage in mice. Galangin and AO inhibited the formation of 8-hydroxy-2'-deoxyguanosine (8-OH2'dG) as an indicator of DNA oxidative damage in the liver cell. Galangin and AO showed the inhibitory effect on the formation of DNA single strand break in the splenocyte by single cell gel electrophoresis (SCGE) assay and also inhibited micronucleated reticulocyte (MNRET) formation of peripheral blood in tail blood of mice. Vit-E revealed antigenotoxic effects in DNA and chromosome levels, but galangin was more potent active compound compare to vit-E under our experimental conditions. The results suggest that the extract of Alpinia officinarum containing galangin can modify the oxidative DNA and chromosomal damage and may act as chemopreventive agent against oxidative stress in vivo.

Keywords

References

  1. 소학관편 : 중약대사전 제2권, 상해과학기술출판사, 상해 p 782 (1985).
  2. Ames, B. N. : Endogeneous DNA damage as related to cancer and aging. Mutation Res. 214, 41 (1989). https://doi.org/10.1016/0027-5107(89)90196-6
  3. Ames, B. N. : Dietary carcinogens and anticarcinogens. Oxygen radical and degenerative diseases. Science 221, 1256 (1983). https://doi.org/10.1126/science.6351251
  4. 김수희, 허문영 : $H_2O_2$ 유도 8-OH2'dG 생성 및 DNA single strand break에 미치는 Galangin의 억제효과. 약학회지 54, 32 (2010).
  5. Lee, S. C., Shin, K. S. and Heo, M. Y. : Protection of ROS induced cytotoxicity and DNA damage by the extract of Alpinia officinarum. J. Food Hygiene and Safety 17, 106 (2002).
  6. Park, J. W., Cundy, K. C. and Ames, B. N. : Detection of DNA adducts high-performance liquid chromatography with electrochemical detection. Carcinogenesis 10, 827 (1989). https://doi.org/10.1093/carcin/10.5.827
  7. Shigenaga, M. K., Park, J. W., Cundy, K. C., Gimeno, C. J. and Ames, B. N. : In vivo oxidative DNA damage : Measurement of 8-hydroxy-2'-deoxyguanosine in DNA and urine by highperformance liquid chromatography with electrochemical detection. Methods Enzymol. 186, 521 (1990). https://doi.org/10.1016/0076-6879(90)86146-M
  8. Singh, N. P., McCoy, M. T., Tice, R. R. and Schneider, E. L. : A simple technique for quantitation of low levels of DNA damage in individual cells. Experimental Cell Research 175, 184 https://doi.org/10.1016/0014-4827(88)90265-0
  9. Olive, P. L., Banath, R. E. and Durand, R. E. : Heterogenecity in radiation-induced DNA damage and repair in tumor and normal cells measured using the comet assay. Radiat. Res. 122, 86 (1990). https://doi.org/10.2307/3577587
  10. Hayashi, M., Morita, T., Kodama, T., Sofuni, T. and Ishidate, Jr. M. : The micronucleus assay with peripheral blood reticulocytes using acridine orange-coated slides. Mutation Res. 278, 209 (1990).
  11. Afolayan, A. J. and Meyer, J. J. : The antimicrobial activity of 3,5,7- tri-hydroxyflavone isolated from the shoots of Helichrysu aureonitens. J. Ethnopharmacol. 57(3), 177 (1997). https://doi.org/10.1016/S0378-8741(97)00065-2
  12. Meyer, J. J., Afolayan, A. J., Taylor, M. B. and Erasmus, D. : Antiviral activity of galangin isolated from the aerial parts of Helichrysum aureonitens. J. Ethnopharmacol. 56(2), 165 (1997). https://doi.org/10.1016/S0378-8741(97)01514-6
  13. Matsuda, H., Ando, S., Kato, T., Morikawa, T. and Yoshikawa, M. : Inhibitors from the rhizomes of Alpinia officinarum on production of nitric oxide in lipopolysaccharide-activated macrophages and the structural requirements of diarylheptanoids for the activity. Bioorg Med. Chem. 14(1), 138 (2006). https://doi.org/10.1016/j.bmc.2005.08.003
  14. De Souza, R. F. and De Giovani, W. F. : Antioxidant properties of complexes of flavonoids with metal ions. Redox Rep. 9(2), 97 (2004). https://doi.org/10.1179/135100004225003897
  15. Rapta, P., Misik, V., Stasko A. and Vrabel I. : Redox intermediates of flavonoids and caffeic acid esters from propolis: an EPR spectroscopy and cyclic voltammetry study. Free Radic Biol. Med. 18(5), 901 (1995). https://doi.org/10.1016/0891-5849(94)00232-9
  16. Myara, I., Pico, I., Vedie, B. and Moatti, N. : A method to screen for the antioxidant effect of compounds on low-density lipoprotein(LDL) : illustration with flavonoids. J. Pharmacol. Toxicol. Methods 30(2), 69 (1993). https://doi.org/10.1016/1056-8719(93)90009-4
  17. Cholbi, M. R., Paya, M. and Alcaraz, M. J. : Inhibitory effects of phenolic compounds on CCl4-induced microsomal lipid peroxidation. Experientia 47(2), 195 (1991). https://doi.org/10.1007/BF01945426
  18. 이승철, 허찬, 이승현, 김현표, 허문영 : 야채 및 과일추출물의 항산화작용과 산화적 염색체손상에 대한 억제효과. 약학회지 48(2), 111 (2004).
  19. Sai, K., Hayashi, M., Takagi, A., Hasegawa, R., Sofuni, T. and Kurokawa, Y. Effects of antioxidants on induction of micronuclei in rat peripheral blood reticulocytes by potassium bromate. Mutat. Res. 269(1), 113 (1992). https://doi.org/10.1016/0027-5107(92)90166-Y
  20. Kurokawa, Y., Matsushima, Y., Takamura, N., Imazawa, T. and Hayashi, Y. : Relationship between the duration of treatment and the incidence of renal cell tumors in male F344 rats administered potassium bromate. Jpn. J. Cancer Res. 78(4), 358 (1987).
  21. Sai, K., Tyson, C. A., Thomas, D. W., Dabbs, J. E., Hasegawa, R. and Kurokawa, Y. : Oxidative DNA damage induced by potassium bromate in isolated rat renal proximal tubules and renal nuclei. Cancer Lett. 87(1), 1 (1994). https://doi.org/10.1016/0304-3835(94)90402-2
  22. Umemura, T., Takagi, A., Sai, K., Hasegawa, R. and Kurokawa, Y. : Oxidative DNA damage and cell proliferation in kidneys of male and female rats during 13-weeks exposure to potassium bromate ($KBrO_3$). Arch. Toxicol. 72(5), 264 (1988).
  23. Mosesso, P., Penna, S., Pepe, G., Lorenti-Garcia, C. and Palitti, F. : Potassium bromate but not X-rays cause unexpectedly elevated levels of DNA breakage similar to those induced by ultraviolet light in Cockayne syndrome (CS-B) fibroblasts. Cytogenet. Genome Res. 104(1-4), 78 (2004).
  24. Parsons, J. L. and Chipman, J. K. : The role of glutathione in DNA damage by potassium bromate in vitro. Mutagenesis 15(4), 311 (2000). https://doi.org/10.1093/mutage/15.4.311
  25. Sai, K., Takagi, A., Umemura, T., Hasegawa, R. and Kurokawa, Y. : Relation of 8-hydroxydeoxyguanosine formation in rat kidney to lipid peroxidation, glutathione level and relative organ weight after a single administration of potassium bromate. Jpn. J. Cancer Res. 82(2), 165 (1991). https://doi.org/10.1111/j.1349-7006.1991.tb01824.x
  26. Awogi, T., Murata, K., Uejima, M., Kuwahara, T., Asanami, S., Shimono, K. and Morita, T. : Induction of micronucleated reticulocytes by potassium bromate and potassium chromate in CD-1 male mice. Mutat. Res. 278(2-3), 181 (1992). https://doi.org/10.1016/0165-1218(92)90231-N
  27. Sai, K., Hayashi, M., Takagi, A., Hasegawa, R., Sofuni, T. and Kurokawa, Y. : Effects of antioxidants on induction of micronuclei in rat peripheral blood reticulocytes by potassium bromate. Mutat. Res. 269(1), 113 (1992). https://doi.org/10.1016/0027-5107(92)90166-Y
  28. Hiramoto, K., Ojima, N., Sako, K. and Kikugawa, K. : Effect of plant phenolics on the formation of the spin-adduct of hydroxyl radical and the DNA strand breaking by hydroxyl radical. Biol. Pharm. Bull. 19, 558 (1996). https://doi.org/10.1248/bpb.19.558
  29. Noda, Y., Anzai, K., Mori, A., Kohno, M., Shinme, M. and Packer, L. : Hydroxyl and superoxide anion radical scavenging activities of natural source antioxidants using the computerized JES-FR30 ESR spectrometer system. Biochem. Mol. Biol. Int. 42(1), 35 (1997).
  30. Afanas'ev, I. B. and Polozova, N. I. : One electron oxidation of p- and o-dihydroxy benzenes by oxygen radical anion in aprotic medium. Zh. Organ. Khim. 26, 1013 (1978).