단백체 분석을 위한 일차원 및 이차원 역상크로마토그래피의 비교

Comparison of 2-D RP-RP MS/MS with 1-D RP MS/MS for Proteomic Analysis

  • 문평곤 (경북대학교 의과대학 분자의학교실) ;
  • 조영은 (경북대학교 의과대학 분자의학교실) ;
  • 백문창 (경북대학교 의과대학 분자의학교실)
  • Moon, Pyong-Gon (Department of Molecular Medicine, School of Medicine, Kyungpook National University) ;
  • Cho, Young-Eun (Department of Molecular Medicine, School of Medicine, Kyungpook National University) ;
  • Baek, Moon-Chang (Department of Molecular Medicine, School of Medicine, Kyungpook National University)
  • 투고 : 2010.08.17
  • 심사 : 2010.09.19
  • 발행 : 2010.10.31

초록

Single-dimensional (1-D) and two-dimensional (2-D) LC methods were utilized to separate peptides from various sources followed by MS/MS analysis. Two-dimensional ultra-high performance liquid chromatography is a useful tool for proteome analysis, providing a greater peak capacity than 1-D LC. The most popular 2-D LC approach used today for proteomic research combines strong cation exchange and reversed-phase LC. We have evaluated an alternative mode for 2-D LC of peptides using 2-D RP-RP nano UPLC Q-TOF Mass Spectrometry, employing reversed-phase columns in both separation dimensions. As control experiments, we identified 129 proteins in 1-D LC and 322 proteins in 2-D LC from E. coli extract peptides. Furthermore, we applied this method to rat primary hepatocyte and a total of 170 proteins were identified from 1-D LC, and 527 proteins were identified from all 2-D LC system. The in-depth protein profiling established by this 2-D LC MS/MS from rat primary hepatocyte could be a very useful reference for future applications in regards to drug induced liver toxicity.

키워드

참고문헌

  1. Adkins, J. N., Monroe, M. E., Auberry, K. J., Shen, Y., Jacobs, J. M., Camp, D. G., 2nd, Vitzthum, F., Rodland, K. D., Zangar, R. C., Smith, R. D. and Pounds, J. G. : A proteomic study of the HUPO Plasma Proteome Project's pilot samples using an accurate mass and time tag strategy. Proteomics. 5, 3454 (2005). https://doi.org/10.1002/pmic.200401333
  2. Eriksson, J. and Fenyo, D. : Protein identification in complex mixtures. J. Proteome. Res. 4, 387 (2005). https://doi.org/10.1021/pr049816f
  3. Wolters, D. A., Washburn, M. P. and Yates, J. R., 3rd : An automated multidimensional protein identification technology for shotgun proteomics. Anal. Chem. 73, 5683 (2001). https://doi.org/10.1021/ac010617e
  4. Shen, Y., Zhang, R., Moore, R. J., Kim, J., Metz, T. O., Hixson, K. K., Zhao, R., Livesay, E. A., Udseth, H. R. and Smith, R. D. : Automated 20 kpsi RPLC-MS and MS/MS with chromatographic peak capacities of 1000-1500 and capabilities in proteomics and metabolomics. Anal. Chem. 77, 3090 (2005). https://doi.org/10.1021/ac0483062
  5. Echan, L. A., Tang, H. Y., Ali-Khan, N., Lee, K. and Speicher, D. W. : Depletion of multiple high-abundance proteins improves protein profiling capacities of human serum and plasma. Proteomics. 5, 3292 (2005). https://doi.org/10.1002/pmic.200401228
  6. Gilar, M., Olivova, P., Daly, A. E. and Gebler, J. C. : Twodimensional separation of peptides using RP-RP-HPLC system with different pH in first and second separation dimensions. J. Sep. Sci. 28, 1694 (2005). https://doi.org/10.1002/jssc.200500116
  7. Masuda, J., Maynard, D. M., Nishimura, M., Ueda, T., Kowalak, J. A. and Markey, S. P. : Fully automated micro- and nanoscale one- or two-dimensional high-performance liquid chromatography system for liquid chromatography-mass spectrometry compatible with non-volatile salts for ion exchange chromatography. J. Chromatogr. A 1063, 57 (2005). https://doi.org/10.1016/j.chroma.2004.11.084
  8. Omenn, G. S., States, D. J., Adamski, M., Blackwell, T. W., Menon, R., Hermjakob, H., Apweiler, R., Haab, B. B., Simpson, R. J., Eddes, J. S., Kapp, E. A., Moritz, R. L., Chan, D. W., Rai, A. J., Admon, A., Aebersold, R., Eng, J., Hancock, W. S., Hefta, S. A., Meyer, H., Paik, Y. K., Yoo, J. S., Ping, P., Pounds, J., Adkins, J., Qian, X., Wang, R., Wasinger, V., Wu, C. Y., Zhao, X., Zeng, R., Archakov, A., Tsugita, A., Beer, I., Pandey, A., Pisano, M., Andrews, P., Tammen, H., Speicher, D. W. and Hanash, S. M. : Overview of the HUPO plasma proteome project: results from the pilot phase with 35 collaborating laboratories and multiple analytical groups, generating a core dataset of 3020 proteins and a publicly-available database. Proteomics. 5, 3226 (2005). https://doi.org/10.1002/pmic.200500358
  9. Toll, H., Oberacher, H., Swart, R. and Huber, C. G. : Separation, detection, and identification of peptides by ion-pair reversed-phase high-performance liquid chromatographyelectrospray ionization mass spectrometry at high and low pH. J. Chromatogr. A 1079, 274 (2005). https://doi.org/10.1016/j.chroma.2005.03.121
  10. Weatherly, D. B., Atwood, J. A., 3rd, Minning, T. A., Cavola, C., Tarleton, R. L. and Orlando, R. : A Heuristic method for assigning a false-discovery rate for protein identifications from Mascot database search results. Mol. Cell. Proteomics. 4, 762 (2005). https://doi.org/10.1074/mcp.M400215-MCP200
  11. Zolotarjova, N., Martosella, J., Nicol, G., Bailey, J., Boyes, B. E. and Barrett, W. C. : Differences among techniques for highabundant protein depletion. Proteomics. 5, 3304 (2005). https://doi.org/10.1002/pmic.200402021
  12. Peng, J., Elias, J. E., Thoreen, C. C., Licklider, L. J. and Gygi, S. P. : Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS) for largescale protein analysis: the yeast proteome. J. Proteome. Res. 2, 43 (2003). https://doi.org/10.1021/pr025556v
  13. Gilar, M., Olivova, P., Chakraborty, A. B., Jaworski, A., Geromanos, S. J. and Gebler, J. C. : Comparison of 1-D and 2- D LC MS/MS methods for proteomic analysis of human serum. Electrophoresis 30, 1157 (2009). https://doi.org/10.1002/elps.200800630
  14. Dowell, J. A., Frost, D. C., Zhang, J. and Li, L. : Comparison of two-dimensional fractionation techniques for shotgun proteomics. Anal. Chem. 80, 6715 (2008). https://doi.org/10.1021/ac8007994
  15. Nakamura, T., Kuromitsu, J. and Oda, Y. : Evaluation of comprehensive multidimensional separations using reversedphase, reversed-phase liquid chromatography/mass spectrometry for shotgun proteomics. J. Proteome. Res. 7, 1007 (2008). https://doi.org/10.1021/pr7005878
  16. Schley, C., Altmeyer, M. O., Swart, R., Muller, R. and Huber, C. G. : Proteome analysis of Myxococcus xanthus by off-line two-dimensional chromatographic separation using monolithic poly-(styrene-divinylbenzene) columns combined with ion-trap tandem mass spectrometry. J. Proteome. Res. 5, 2760 (2006). https://doi.org/10.1021/pr0602489
  17. Figliomeni, M. L. and Abdel-Rahman, M. S. : Ethanol does not increase the hepatotoxicity of cocaine in primary rat hepatocyte culture. Toxicology 129, 25 (1998).
  18. Han, C. L., Chien, C. W., Chen, W. C., Chen, Y. R., Wu, C. P., Li, H. and Chen, Y. J. : A multiplexed quantitative strategy for membrane proteomics: opportunities for mining therapeutic targets for autosomal dominant polycystic kidney disease. Mol. Cell. Proteomics. 7, 1983 (2008). https://doi.org/10.1074/mcp.M800068-MCP200
  19. Dennis, G., Jr., Sherman, B. T., Hosack, D. A., Yang, J., Gao, W., Lane, H. C.and Lempicki, R. A. : DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome. Biol. 4, P3 (2003). https://doi.org/10.1186/gb-2003-4-5-p3
  20. Washburn, M. P., Wolters, D. and Yates, J. R. 3rd. : Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat. Biotechnol. 19, 242 (2001). https://doi.org/10.1038/85686
  21. Liu, H., Li, G. Finch, J. W., Geromanos, S. J. and Gebler, J. C. : Development of an Automated RP/RP 2D Nano LC/MS Method for Proteomic Analysis. ABRF P57-T (2007).
  22. Bargagli, E., Penza, F., Vagaggini, C., Magi, B., Perari, M. G. and Rottoli, P. : Analysis of carbonylated proteins in bronchoalveolar lavage of patients with diffuse lung diseases. Lung. 185, 139 (2007). https://doi.org/10.1007/s00408-007-9001-6
  23. Korolainen, M. A., Nyman, T. A., Nyyssonen, P., Hartikainen, E. S. and Pirttila, T. : Multiplexed proteomic analysis of oxidation and concentrations of cerebrospinal fluid proteins in Alzheimer disease. Clin. Chem. 53, 657 (2007). https://doi.org/10.1373/clinchem.2006.078014
  24. Beigel, J., Fella, K., Kramer, P. J., Kroeger, M. and Hewitt, P. : Genomics and proteomics analysis of cultured primary rat hepatocytes. Toxicol. In Vitro 22, 171 (2008). https://doi.org/10.1016/j.tiv.2007.06.019
  25. Rowe, C., Goldring, C. E., Kitteringham, N. R., Jenkins, R. E., Lane, B. S., Sanderson, C., Elliott, V., Platt, V., Metcalfe, P. and Park, B. K. : Network analysis of primary hepatocyte dedifferentiation using a shotgun proteomics approach. J. Proteome. Res. 9, 2658 (2010). https://doi.org/10.1021/pr1001687