Mannanolytic Enzyme Activity of Paenibacillus woosongensis

Paenibacillus woosongensis의 만난분해 효소활성

  • Yoon, Ki-Hong (Department of Food Science and Biotechnology, Woosong University)
  • 윤기홍 (우송대학교 식품생물과학과)
  • Received : 2010.11.11
  • Accepted : 2010.11.24
  • Published : 2010.12.31

Abstract

The activities of mannanase, ${\beta}$-mannosidase, and ${\alpha}$-galactosidase were detected in culture filtrate of Paenibacillus woosongensis showing mannanolytic activity for locust bean gum. Optimal conditions occurred at pH 5.5 and $60^{\circ}C$ for mannanase toward locust bean gum, pH 6.5 and $50^{\circ}C$ for ${\beta}$-mannosidase toward para-nitrophenyl-${\beta}$-D-mannopyranoside, and pH 6.0-6.5 and $50^{\circ}C$ for ${\alpha}$-galactosidase toward para-nitrophenyl-${\alpha}$-D-galactopyranoside in the culture filtrate, respectively. The mannanolytic enzyme of culture filtrate hydrolyzed mannobiose as well as manno-oligosaccharides including mannotriose, mannotetraose, mannopentaose and mannohexaose. It could also hydrolyze ${\alpha}$-1,6 linked galacto-oligosaccharides such as melibiose, raffinose and stachyose to liberate galactose residue. From these results, it is assumed that P. woosongensis produces three enzymes required for the complete decomposition of galactomannan.

만난의 분해활성을 갖는 Paenibacillus woosongensis의 배양 상등액으로부터 mannanase, ${\beta}$-mannosidase와 ${\alpha}$-galactosidase 활성이 관찰되었다. 배양상등액 내의 locust bean gum를 분해하는 mannanase는 pH 5.5와 $60^{\circ}C$, para-nitrophenyl-${\beta}$-D-mannopyranoside를 분해하는 ${\beta}$-mannosidase는 pH 6.5, $50^{\circ}C$, para-nitrophenyl-${\alpha}$-D-galactopyranoside를 분해하는 ${\alpha}$-galactosidase는 pH 6.0-6.5와 $50^{\circ}C$에서 각각 최대활성을 보였다. 배양상등액의 만난 분해효소는 mannotriose, mannotetraose, mannopentaose, mannohexaose와 같은 만노올리고당을 분해할 뿐 아니라 mannobiose도 분해하였다. 또한 melibiose, raffinose, stachyose 등의 ${\alpha}$-1,6 결합형 galacto-oligosaccharides를 분해하여 galactose를 생성하였다. 이러한 결과로 보아 P.woosongensis는 galactomannan을 완전히 분해하는데 필요한 3종류 효소를 모두 생산하는 것으로 판단된다.

Keywords

References

  1. Cho, K.M., S.Y. Hong, S.M. Lee, Y.H. Kim, G.G. Kahng, H. Kim, and H.D. Yun. 2006. A cel44C-man26A gene of endophytic Paenibacillus polymyxa GS01 has multi-glycosyl hydrolases in two catalytic domains. Appl. Microbiol. Biotechnol. 73, 618-630. https://doi.org/10.1007/s00253-006-0523-2
  2. Coombs, J. and J.E. Brenchley. 2001. Characterization of two new glycosyl hydrolases from the lactic acid bacterium Carnobacterium piscicola strain BA. Appl. Environ. Microbiol. 67, 5094-5099. https://doi.org/10.1128/AEM.67.11.5094-5099.2001
  3. Fu, X., X. Huang, P. Liu, L. Lin, G. Wu, C. Li, C. Feng, and Y. Hong. 2010. Cloning and characterization of a novel mannanase from Paenibacillus sp. BME-14. J. Microbiol. Biotechnol. 20, 518-524.
  4. Ganter, C., A. Bock, P. Buckel, and R. Mattes. 1988. Production of thermostable recombinant $\alpha$-galactosidase suitable for raffinose elimination from sugar beet syrup. J. Biotechnol. 8, 301-310. https://doi.org/10.1016/0168-1656(88)90022-3
  5. Gomes, J., K. Terler, R. Kratzer, E. Kainz, and W. Steiner. 2007. Production of thermostable $\beta$-mannosidase by a strain of Thermoascus aurantiacus: Isolation, partial purification and characterization of the enzyme. Enzyme Microb. Technol. 40, 969-975. https://doi.org/10.1016/j.enzmictec.2006.08.011
  6. Harjunpaa, V., J. Helin, A. Koivula, M. Siika-aho, and T. Drakenberg. 1999. A comparative study of two retaining enzymes of Trichoderma reesei: transglycosylation of oligosaccharides catalysed by the cellobiohydrolase I, Cel7A, and the L-mannanase, Man5A. FEBS Lett. 443, 149-153. https://doi.org/10.1016/S0014-5793(98)01692-5
  7. Irish, G.G., G.W. Barbour, H.L. Classen, R.T. Tyler, and M.R. Bedford. 1995. Removal of the $\alpha$-galactosides of sucrose from soybean meal using either ethanol extraction or exogenous $\alpha$-galactosidase and broiler performance. Poult. Sci. 74, 1484-1494. https://doi.org/10.3382/ps.0741484
  8. Jindou, S., K. Shuichi, F. Emi, F. Tsuchiyoshi, H. Hidenori, K. Tetsuya, S. Kazuo, and O. Kunio. 2002. $\alpha$-Galactosidase Aga27A, an enzymatic component of the Clostridium josui cellulosome. J. Bacteriol. 184, 600-604. https://doi.org/10.1128/JB.184.2.600-604.2002
  9. Kim, H.S. and K.H. Yoon. 2004. Isolation of Chryseobacterium meningosepticum producing $\beta$-mannosidase from a mudfish. Kor. J. Microbiol. Biotechnol. 32, 371-374.
  10. Kweun, M.A., H.S. Kim, M.S. Lee, J.H. Choi, and K.H. Yoon. 2003. Mannanase production by a soybean isolate, Bacillus subtilis WL-7. Kor. J. Micobiol. Biotechnol. 31, 277-283.
  11. Lee, J.C. and K.H. Yoon. 2008. Paenibacillus woosongensis sp. nov., a xylanolytic bacterium isolated from forest soil. Int. J. Syst. Evol. Microbiol. 58, 612-616. https://doi.org/10.1099/ijs.0.65350-0
  12. Parker, K.N., S.R. Chhabra, D. Lam, W. Callen, G.D. Duffaud, M.A. Snead, J.M. Short, E.J. Mathur, and R.M. Kelly. 2001. Galactomannanases Man2 and Man5 from Thermotoga species: Growth physiology on galactomannans, gene sequence analysis, and biochemical properties of recombinant enzymes. Biotechnol. Bioeng. 75, 322-333. https://doi.org/10.1002/bit.10020
  13. Shankar, S.K. and V.H. Mulimani. 2007. $\alpha$-Galactosidase production by Aspergillus oryzae in solid-state fermentation. Bioresour. Technol. 98, 958-961. https://doi.org/10.1016/j.biortech.2006.03.013
  14. Wang, H., H. Luo, J. Li, Y. Bai, H. Huang, P. Shi, Y. Fan, and B. Yao. 2010. An $\alpha$-galactosidase from an acidophilic Bispora sp. MEY-1 strain acts synergistically with $\beta$-mannanase. Bioresour. Technol. 101, 8376-8382. https://doi.org/10.1016/j.biortech.2010.06.045
  15. Yoon, K.H., S. Chung, and B.L. Lim. 2008. Characterization of the Bacillus subtilis W-3 mannanase from a recombinant Escherichia coli. J. Microbiol. 46, 344-349. https://doi.org/10.1007/s12275-008-0045-y