Studies on the Functional Role of RNase G in the Regulation of Escherichia coli Enolase Expression Under Microaerobic Conditions

미세호기성 조건에서 Escherichia coli 에놀라아제의 발현에 있어서 RNase G의 역할에 대한 연구

  • Sim, Se-Hoon (Department of Life Science, Chung-Ang University) ;
  • Kim, Yong-Hak (Functional Proteomics Center, Korea Institute of Science and Technology) ;
  • Sim, Min-Ji (Department of Life Science, Chung-Ang University) ;
  • Lim, Bo-Ram (Department of Life Science, Chung-Ang University) ;
  • Lee, Kang-Seok (Department of Life Science, Chung-Ang University)
  • 심세훈 (중앙대학교 자연과학대학 생명과학과) ;
  • 김용학 (한국과학기술연구원 프로테오믹스이용기술개발사업단) ;
  • 심민지 (중앙대학교 자연과학대학 생명과학과) ;
  • 임보람 (중앙대학교 자연과학대학 생명과학과) ;
  • 이강석 (중앙대학교 자연과학대학 생명과학과)
  • Received : 2010.07.27
  • Accepted : 2010.08.18
  • Published : 2010.09.30

Abstract

Enolase is one of the glycolytic enzymes, which are involved in a central energy metabolism present in nearly all organisms. In Escherichia coli, enolase constitutes RNA degradosome with RNase E, PNPase and RNA helicase, which are involved in most mRNA degradation and RNA processing. Recently, it has been reported that RNase G, an RNase E homolog, degrades eno mRNA. To examine a functional role of RNase G in enolase expression which is known to be up-regulated under microaerobic condition, we carried out experiments. Here, we report that expression levels of enolase and RNase G are not correlated under microaerobic condition. Based on this observation, we suggest the existence of an unknown factor(s) which regulate the activity of RNase G or enolase mRNA under microaerobic conditions.

에놀라아제는 대부분의 생명체에서 에너지 대사에 중추적인 기능을 하는 해당과정에 관여하는 효소이며, Escherichia coli에서 RNA 가공 및 분해에 중심적인 역할을 하는 RNase E와 PNPase, Helicase와 함께 RNA 분해 복합체를 형성한다고 알려져 있다. E. coli에서 에놀라아제의 mRNA는 RNase E의 동족체인 RNase G에 의해 잘려서 분해되어 조절 된다고 알려져있다. 산소가 없는 환경에서 과발현되는 것으로 알려진 에놀라아제의 발현에 있어서 RNase G의 역할을 알아보기 위하여, 연구를 수행한 결과, 미세호기성 조건에서는 에놀라아제와 RNase G의 발현양 사이에는 상관관계가 밝혀내었다. 이러한 연구결과는 미세호기성 조건에서는 RNase G 이외에 에놀라아제의 조절에 기여하는 다른 기작이 있을 수 있다는 것을 시사한다.

Keywords

References

  1. Chandran, V. and B.F. Luisi. 2006. Recognition of enolase in the Escherichia coli RNA degradosome. J. Mol. Biol. 358, 8-15. https://doi.org/10.1016/j.jmb.2006.02.012
  2. Coburn, G.A. and G.A. Mackie. 1999. Degradation of mRNA in Escherichia coli: an old problem with some new twists. Prog. Nucleic Acid Res. Mol. Biol. 62, 55-108.
  3. Dasgupta, S., L. Fernandez, L. Kameyama, T. Inada, Y. Nakamura, A. Pappas, and D.L. Court. 1998. Genetic uncoupling of the dsRNA-binding and RNA cleavage activities of the Escherichia coli endoribonuclease RNase III - the effect of dsRNA binding on gene expression. Mol. Microbiol. 28, 629-640. https://doi.org/10.1046/j.1365-2958.1998.00828.x
  4. Datsenko, K.A. and B.L. Wanner. 2000. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 97, 6640-6645. https://doi.org/10.1073/pnas.120163297
  5. Jiang, X., A. Diwa, and J.G. Belasco. 2000. Regions of RNase E important for 5'-end-dependent RNA cleavage and autoregulated synthesis. J. Bacteriol. 182, 2468-2475. https://doi.org/10.1128/JB.182.9.2468-2475.2000
  6. Kaga, N., G. Umitsuki, K. Nagai, and M. Wachi. 2002. RNase G-dependent degradation of the eno mRNA encoding a glycolysis enzyme enolase in Escherichia coli. Biosci. Biotechnol. Biochem. 66, 2216-2220. https://doi.org/10.1271/bbb.66.2216
  7. Lee, K., J.A. Bernstein, and S.N. Cohen. 2002. RNase G complementation of rne null mutation identifies functional interrelationships with RNase E in Escherichia coli. Mol. Microbiol. 43, 1445-1456. https://doi.org/10.1046/j.1365-2958.2002.02848.x
  8. Li, Z., S. Pandit, and M.P. Deutscher. 1999. RNase G (CafA protein) and RNase E are both required for the 5′ maturation of 16S ribosomal RNA. EMBO J. 18, 2878-2885. https://doi.org/10.1093/emboj/18.10.2878
  9. Mackie. G.A. 1998. Ribonuclease E is a 5′-end-dependent endonuclease. Nature 395, 720-723. https://doi.org/10.1038/27246
  10. McDowall, K.J., R.G. Hernandez, S. Lin-Chao, and S.N. Cohen. 1993. The ams-1 and rne-3071 temperature-sensitive mutations in the ams gene are in close proximity to each other and cause substitutions within a domain that resembles a product of the Escherichia coli mre locus. J. Bacteriol. 175, 4245-4249. https://doi.org/10.1128/jb.175.13.4245-4249.1993
  11. Ow, M.C., Q. Liu, and S.R. Kushner. 2000. Analysis of mRNA decay and rRNA processing in Escherichia coli in the absence of RNase E-based degradosome assembly. Mol. Microbiol. 38, 854-866. https://doi.org/10.1046/j.1365-2958.2000.02186.x
  12. Regonesi, M.E., M. Del Favero, F. Basilico, F. Briani, L. Benazzi, P. Tortora, P. Mauri, and G. Dehò. 2006. Analysis of the Escherichia coli RNA degradosome composition by a proteomic approach. Biochimie 88, 151-161. https://doi.org/10.1016/j.biochi.2005.07.012
  13. Tock, M.R., A.P. Walsh, G. Carroll, and K.J. McDowall. 2000. The CafA protein required for the 5′-maturation of 16S rRNA is a 5′-end-dependent ribonuclease that has context-dependent broad sequence specificity. J. Biol. Chem. 275, 8726-8732. https://doi.org/10.1074/jbc.275.12.8726
  14. Wachi, M., G. Umitsuki, M. Shimizu, A. Takada, and K. Nagai. 1999. Escherichia coli cafA gene encodes a novel RNase, designated as RNase G, involved in processing of the 5' end of 16S rRNA. Biochem. Biophys. Res. Commun. 259, 483-488. https://doi.org/10.1006/bbrc.1999.0806
  15. Wachi, M., N. Kaga, G. Umitsuki, D.P. Clark, and K. Nagai. 2001. A novel RNase G mutant that is defective in degradation of adhE mRNA but proficient in the processing of 16S rRNA precursor. Biochem. Biophys. Res. Commun. 289, 1301-1306. https://doi.org/10.1006/bbrc.2001.6115