References
- Chandran, V. and B.F. Luisi. 2006. Recognition of enolase in the Escherichia coli RNA degradosome. J. Mol. Biol. 358, 8-15. https://doi.org/10.1016/j.jmb.2006.02.012
- Coburn, G.A. and G.A. Mackie. 1999. Degradation of mRNA in Escherichia coli: an old problem with some new twists. Prog. Nucleic Acid Res. Mol. Biol. 62, 55-108.
- Dasgupta, S., L. Fernandez, L. Kameyama, T. Inada, Y. Nakamura, A. Pappas, and D.L. Court. 1998. Genetic uncoupling of the dsRNA-binding and RNA cleavage activities of the Escherichia coli endoribonuclease RNase III - the effect of dsRNA binding on gene expression. Mol. Microbiol. 28, 629-640. https://doi.org/10.1046/j.1365-2958.1998.00828.x
- Datsenko, K.A. and B.L. Wanner. 2000. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 97, 6640-6645. https://doi.org/10.1073/pnas.120163297
- Jiang, X., A. Diwa, and J.G. Belasco. 2000. Regions of RNase E important for 5'-end-dependent RNA cleavage and autoregulated synthesis. J. Bacteriol. 182, 2468-2475. https://doi.org/10.1128/JB.182.9.2468-2475.2000
- Kaga, N., G. Umitsuki, K. Nagai, and M. Wachi. 2002. RNase G-dependent degradation of the eno mRNA encoding a glycolysis enzyme enolase in Escherichia coli. Biosci. Biotechnol. Biochem. 66, 2216-2220. https://doi.org/10.1271/bbb.66.2216
- Lee, K., J.A. Bernstein, and S.N. Cohen. 2002. RNase G complementation of rne null mutation identifies functional interrelationships with RNase E in Escherichia coli. Mol. Microbiol. 43, 1445-1456. https://doi.org/10.1046/j.1365-2958.2002.02848.x
- Li, Z., S. Pandit, and M.P. Deutscher. 1999. RNase G (CafA protein) and RNase E are both required for the 5′ maturation of 16S ribosomal RNA. EMBO J. 18, 2878-2885. https://doi.org/10.1093/emboj/18.10.2878
- Mackie. G.A. 1998. Ribonuclease E is a 5′-end-dependent endonuclease. Nature 395, 720-723. https://doi.org/10.1038/27246
- McDowall, K.J., R.G. Hernandez, S. Lin-Chao, and S.N. Cohen. 1993. The ams-1 and rne-3071 temperature-sensitive mutations in the ams gene are in close proximity to each other and cause substitutions within a domain that resembles a product of the Escherichia coli mre locus. J. Bacteriol. 175, 4245-4249. https://doi.org/10.1128/jb.175.13.4245-4249.1993
- Ow, M.C., Q. Liu, and S.R. Kushner. 2000. Analysis of mRNA decay and rRNA processing in Escherichia coli in the absence of RNase E-based degradosome assembly. Mol. Microbiol. 38, 854-866. https://doi.org/10.1046/j.1365-2958.2000.02186.x
- Regonesi, M.E., M. Del Favero, F. Basilico, F. Briani, L. Benazzi, P. Tortora, P. Mauri, and G. Dehò. 2006. Analysis of the Escherichia coli RNA degradosome composition by a proteomic approach. Biochimie 88, 151-161. https://doi.org/10.1016/j.biochi.2005.07.012
- Tock, M.R., A.P. Walsh, G. Carroll, and K.J. McDowall. 2000. The CafA protein required for the 5′-maturation of 16S rRNA is a 5′-end-dependent ribonuclease that has context-dependent broad sequence specificity. J. Biol. Chem. 275, 8726-8732. https://doi.org/10.1074/jbc.275.12.8726
- Wachi, M., G. Umitsuki, M. Shimizu, A. Takada, and K. Nagai. 1999. Escherichia coli cafA gene encodes a novel RNase, designated as RNase G, involved in processing of the 5' end of 16S rRNA. Biochem. Biophys. Res. Commun. 259, 483-488. https://doi.org/10.1006/bbrc.1999.0806
- Wachi, M., N. Kaga, G. Umitsuki, D.P. Clark, and K. Nagai. 2001. A novel RNase G mutant that is defective in degradation of adhE mRNA but proficient in the processing of 16S rRNA precursor. Biochem. Biophys. Res. Commun. 289, 1301-1306. https://doi.org/10.1006/bbrc.2001.6115