Optimization of Fermentation Conditions for CoQ10 Production Using Selected Bacterial Strains

CoQ10 생성 세균의 선별 및 발효조건 최적화

  • Jeong, Keun-Il (Department of Microbiology and Molecular Biology, College of Biological Sciences and Biotechnology, Chungnam National University) ;
  • Kang, Won-Hwa (Department of Microbiology and Molecular Biology, College of Biological Sciences and Biotechnology, Chungnam National University) ;
  • Lee, Jung-Ah (Department of Microbiology and Molecular Biology, College of Biological Sciences and Biotechnology, Chungnam National University) ;
  • Shin, Dong-Ha (Insect Biotech Co. Ltd.) ;
  • Bae, Kyung-Sook (Biological Resources Center, KRIBB) ;
  • Park, Ho-Young (Biological Resources Center, KRIBB) ;
  • Park, Hee-Moon (Department of Microbiology and Molecular Biology, College of Biological Sciences and Biotechnology, Chungnam National University)
  • Received : 2009.12.08
  • Accepted : 2009.12.16
  • Published : 2010.03.31

Abstract

Coenzyme Q10 (CoQ10) is an essential lipid-soluble component of membrane-bound electron transport chains. CoQ10 is involved in several aspects of cellular metabolism and is increasingly being used in therapeutic applications for several diseases. Despite the recent accomplishments in metabolic engineering of Escherichia coli for CoQ10 production, the production levels are not yet competitive with those by fermentation or isolation. So we tested several microorganisms obtained from the KCTC of Biological Resource Center to find novel sources of strain-development for CoQ10-production. Then we selected two strains, Paracoccus denitrificans (KCTC 2530) and Asaia siamensis (KCTC 12914), and tested to optimize the CoQ10 production conditions. Among the carbon sources tested, CoQ10 production was the highest when fructose was supplied about 4% concentration. Yeast extract produced the highest CoQ10 production about 2% concentration. The highest CoQ10 production was obtained at pH 6.0 for P. denitrificans and pH 8.0 for A. siamensis. And two strains showed the highest CoQ10 production at $30^{\circ}C$, but the highest DCW was obtained at $37^{\circ}C$. In the fed-batch culture, P. denitrificans yielded $14.34{\pm}0.473$ mg and A. siamensis yielded $12.53{\pm}0.231$ mg of final CoQ10 production.

Coenzyme Q10 (CoQ10)은 전자전달계에 필수적인 요소로 질병치료 및 완화에 도움이 되어 산업 의학적으로 그 활용도가 넓어지고 있다. 본 연구에서는 새로운 CoQ10 생산균주를 선별하기 위하여 quinone 분석 결과 CoQ10을 함유하는 것으로 확인된 8종 미생물의 생장특성과 CoQ10 생산능을 1차 조사하여, 세균류인 Paracoccus denitrificans KCTC 2530과 Asaia siamensis KCTC 12914를 대량배양을 통한 CoQ10 생산에 유리한 특성을 갖는 균주로 선별하였다. 이들 세균류의 생장 및 CoQ10 생산의 최적조건을 플라스크배양으로 조사한 결과, M81 배지를 기반으로 하여 탄소원으로는 4% fructose, 질소원으로는 2% yeast extract가 가장 좋은 것으로 조사되었으며, 배양온도는 $30^{\circ}C$, 배지의 최적 pH는 P. denitrificans KCTC 2530의 경우 pH 6.0, A. siamensis KCTC 12914의 경우 pH 8.0으로 조사되었다. 이를 바탕으로 2 L fed-batch culture를 수행한 결과, P. denitrificans KCTC 2530은 1 L 당 $14.34{\pm}0.473$ mg, A. siamensis KCTC 12914는 $12.53{\pm}0.231$ mg의 CoQ10을 생산하였다.

Keywords

References

  1. Choi, J.H., Y.W. Ryu, and J.H. Seo. 2005. Biotechnological production and applications of Coenzyme Q10. Appl. Microbiol. Biotechnol. 68, 9-15. https://doi.org/10.1007/s00253-005-1946-x
  2. Ha, S.J., S.Y. Kim, J.H. Seo, H.J. Moon, K.M. Lee, and J.K. Lee. 2007. Controlling the sucrose concentration increases Coenzyme Q10 production in fed-batch culture of Agrobacterium tumefaciens. Appl. Microbiol. Biotechnol. 76, 109-116. https://doi.org/10.1007/s00253-007-0995-8
  3. Krishna, H.B., N. Madhuri, J.A. Kim, B.K. Yoo, J.S. Woo, and C.S. Yong. 2007. Preparation, characterization and evaluation of Coenzyme Q10 binary solid dispersions for enhanced solubility and dissolution. Biol. Pharm. Bull. 30. 1171-1176. https://doi.org/10.1248/bpb.30.1171
  4. Modi, K., D.D. Santani, R.K. Goyal, and P.A. Bhatt. 2006. Effect of coenzyme Q10 on catalase activity and other antioxidant parameters in streptozotocin-induced diabetic rats. Biol. Trace. Elem. Res. 109, 25-34. https://doi.org/10.1385/BTER:109:1:025
  5. Park, Y.C., S.J. Kim, J.H. Choi, W.H. Lee, K.M. Park, M. Kawamukai, Y.W. Ryu, and J.H. Seo. 2005. Batch and fed-batch production of coenzyme Q10 in recombinant E. coli containing the decaprenyl diphosphate synthase gene from Gluconobacter suboxydans. Appl. Microbiol. Biotechnol. 67, 192-196. https://doi.org/10.1007/s00253-004-1743-y
  6. Saiki, R., A. Nagata, N. Uchida, T. Kainou, H. Matsuda, and M. Kawamukai. 2003. Fission yeast decaprenyl diphosphate synthase consists of Dps1 and the newly characterized Dlp1 protein in a novel heterotetrameric structure. Eur. J. Biochem. 270, 4113- 4121. https://doi.org/10.1046/j.1432-1033.2003.03804.x
  7. Singh, R.B., G.S. Wander, A. Rastogi, P.K. Shukla, A. Mittal, J.P. Sharma, S.K. Mehrotra, R. Kapoor, and R.K. Chopra. 1998. Randomized, double-blind placebo-controlled trial of coenzyme Q10 in patients with acute myocardial infraction. Cardiovasc. Drugs Ther. 12, 347-353. https://doi.org/10.1023/A:1007764616025
  8. Szkopińska, A. 2000. Ubiquinone. Biosynthesis of quinine ring and its iosprenoid side chain. Intracellular localization. Acta Biochim. Pol. 47, 469-480.
  9. Takahashi, S., T. Nishino, and T. Koyama. 2003. Isolation and expression of Paracoccus denitrificans decaprenyl diphosphate synthase gene for production of ubiquinone-10 in Escherichia coli. Biochem. Eng. J. 16, 183-190. https://doi.org/10.1016/S1369-703X(03)00035-4
  10. Tang, P.H., M.V. Miles, L. Miles, J. Quinlan, B. Wong, A. Wenisch, and K. Bove. 2004. Measurement of reduced and oxidized coenzyme Q9 and coenzyme Q10 levels in mouse tissues by HPLC with coulometric detection. Clin. Chim. Acta 341, 173- 184. https://doi.org/10.1016/j.cccn.2003.12.002
  11. Tang, P.H., M.V. Miles, P. Steele, B.S. Davidson, S.R. Geraghty, and A.L. Morrow. 2006. Determination of coenzyme Q10 in human breast milk by high-performance liquid chromatography. Biomed. Chromatogr. 20, 1336-1343. https://doi.org/10.1002/bmc.702
  12. Yoshida, H., Y. Katani, K. Ochiai, and K. Araki. 1998. Production of ubiquinone-10 using bacteria. J. Gen. Appl. Microbiol. 44, 19-26. https://doi.org/10.2323/jgam.44.19
  13. Zhang, D., B. Shrestha, W. Niu, P. Tian, and T. Tan. 2007. Phenotypes and fed-batch fermentation of ubiquinone-overproducing fission yeast using ppt1 gene. J. Biotechnol. 128, 120-131. https://doi.org/10.1016/j.jbiotec.2006.09.012