DOI QR코드

DOI QR Code

Effect of Zr Addition on Thermal Stability of Grains in Mg

Mg 결정립의 열적 안정성에 미치는 Zr 첨가의 영향

  • Jun, Joong-Hwan (Production Technology R&D Division, Korea Institute of Industrial Technology)
  • 전중환 (한국생산기술연구원 뿌리산업기술연구본부)
  • Received : 2010.08.27
  • Accepted : 2010.09.20
  • Published : 2010.09.30

Abstract

Influence of Zr addition on grain stability at elevated temperatures has been investigated for extruded pure Mg and Mg-0.25%Zr alloy. The grain size of pure Mg increases rapidly with increasing annealing temperature when isochronally annealed for 60 min from 573 to 773 K, whereas the grains are stable up to 723 K for the Zr-containing alloy. The activation energies for grain growth ($E_g$) at this temperature range were determined as 75.3 and 105.9 kJ/mole for the pure Mg and Mg-0.25%Zr alloy, respectively. TEM observations on the annealed Mg-Zr samples revealed that higher thermal stability and higher activation energy for grain growth resulting from Zr addition in Mg may well be associated with the restriction of grain growth by nano-sized Zr particles distributed in the microstructure.

Keywords

References

  1. B. L. Mordike and T. Ebert: Mater. Sci. Eng. A, 302 (2001) 37. https://doi.org/10.1016/S0921-5093(00)01351-4
  2. A. Bussiba, A. Ben Artzy, A. Shtechman, S. Ifergan and M. Kupiec: Mater. Sci. Eng. A, 302 (2001) 56. https://doi.org/10.1016/S0921-5093(00)01354-X
  3. P. Cao, M. Qian and D.H. StJohn: Scripta Mater., 53 (2005) 841. https://doi.org/10.1016/j.scriptamat.2005.06.010
  4. C. W. Su, L. Lu and M. O. Lai : Mater. Sci. Eng. A, 434 (2006) 227. https://doi.org/10.1016/j.msea.2006.06.103
  5. L. B. Tong, M. Y. Zheng, X. S. Hu, K. Wu, S. W Xu, S. Kamado and Y. Kojima : Mater. Sci. Eng. A, 527 (2010) 4250. https://doi.org/10.1016/j.msea.2010.03.062
  6. T. Mukai, M. Yamanoi, H. Watanabe and K. Higashi: Scripta Mater., 45 (2001) 89. https://doi.org/10.1016/S1359-6462(01)00996-4
  7. W. N. Tang, R. S. Chen, J. Zhou and E. H. Han : Mater. Sci. Eng. A, 499 (2009) 404. https://doi.org/10.1016/j.msea.2008.09.048
  8. J. A. del Valle, M. T. Perez-Prado and O. A. Ruano: Mater. Sci. Eng. A, 355 (2003) 68. https://doi.org/10.1016/S0921-5093(03)00043-1
  9. A. Muller, G. Garces, P. Perez and P. Adeva : J. Alloy Comp., 443 (2007) L1 https://doi.org/10.1016/j.jallcom.2006.10.006
  10. Ma Qian and A. Das : Scripta Mater. 54 (2006) 881. https://doi.org/10.1016/j.scriptamat.2005.11.002
  11. Y. C. Lee, A. K. Dahle and D. H. StJohn : Metall, Mater. Trans. A, 31 (2000) 2895. https://doi.org/10.1007/BF02830349
  12. W. Xiao, S. Jia, J. Wang, Y. Wu and L. Wang: Mater. Sci. Eng. A, 474 (2008) 317. https://doi.org/10.1016/j.msea.2007.04.008
  13. J. Du, J. Yang, M. Kuwabara, W Li and J. Peng : J. Alloy Comp., 470 (2009) 134. https://doi.org/10.1016/j.jallcom.2008.02.052
  14. M. Yang, F. Pan, R. Cheng and A. Tang: Mater. Sci. Eng. A, 491 (2008) 440. https://doi.org/10.1016/j.msea.2008.02.017
  15. Y. M. Kim, C. D. Yim and B. S. You: Scripta Mater., 57 (2007) 691. https://doi.org/10.1016/j.scriptamat.2007.06.044
  16. M. M Avedesian and H. Baker : Magnesium and Magnesium Alloys, ASM Specialty Handbook, ASM International, Materials Park, OH, p. 15.
  17. H. Okamoto: J. Phase Equilibria, 23 (2002), 198. https://doi.org/10.1361/1054971023603991
  18. Y. Tamura, N. Kono, T. Motegi and E. Sato : J. Jpn.Inst. Light Met., 48 (1998) 185. https://doi.org/10.2464/jilm.48.185
  19. M. Qian, D. H. StJohn and M. T. Frost: Mater. Sci. Forum, 419-422 (2003) 593. https://doi.org/10.4028/www.scientific.net/MSF.419-422.593
  20. H. K. Kim and W. J. Kim : Mater. Sci. Eng. A, 385 (2004) 300. https://doi.org/10.1016/S0921-5093(04)00882-2
  21. H. J. Frost and M. F. Ashby : DeformationMechanism Maps, Pergamon Press, Oxford, p, 43.
  22. M. Jafari, M. H. Enayati, M. H. Abbasi and F. Karimzadeb : J. Alloy Comp., 478 (2009) 260. https://doi.org/10.1016/j.jallcom.2008.12.017
  23. Z. Huda : Mater. Sci. Forum, 467-470 (2004) 985. https://doi.org/10.4028/www.scientific.net/MSF.467-470.985