DOI QR코드

DOI QR Code

Association between the Polymorphism in FUT1 Gene and the Resistance to PWD and ED in Three Pig Breeds

  • Luo, Yanru (Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University) ;
  • Qiu, Xiaotian (National Center of Preservation and Utilization of Genetic Resources of Domestic Animals and Forage, National Animal Husbandry Service Station) ;
  • Li, Hejun (Shanghai Animal Disease Control Center) ;
  • Zhang, Qin (Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University)
  • Received : 2009.12.24
  • Accepted : 2010.04.04
  • Published : 2010.10.01

Abstract

Post-weaning diarrhoea (PWD) and oedema disease (ED) caused by E. coli F18 always result in economic losses to pig producers, and no effective methods of controlling PWD and ED are presently available. FUT1 has been identified as a candidate gene controlling the expression of E. coli F18 receptor. This study examined the correlation between F18ab and F18ac adhesion phenotypes and the polymorphism at position M307 of the FUT1 gene in three pig breeds (231 Large White, 107 Landrace and 109 Songliao Black). The results showed: i) Both the susceptible genotypes (GG and GA) and the adhesion phenotypes (adhesive or weekly adhesive) were dominant in all three breeds with frequencies over 95%. ii) Three adhesion patterns of the two F18 variants F18ab and F18ac, i.e., ($ab^+$, $ac^+$), ($ab^+$, $ac^-$) and ($ab^-$, $ac^-$), were found in all three breeds, and there was no significant difference in the distribution of adhesion phenotypes of the two variants (separately or jointly) among the three breeds (p>0.05). iii) The FUT1 M307 genotypes were completely associated with the F18ab adhesion phenotypes and very strongly associated with the F18ac adhesion phenotypes. All individuals of genotype AA were non-adhesive to both F18ab and F18ac. All individuals of genotype GG or GA were adhesive to F18ab, whereas 11% of them were non-adhesive to F18ac. These results suggest that the polymorphism at FUT1 M307 can be used for marker-assisted selection of PWD and ED resistant pigs.

Keywords

References

  1. Bao, W. B., S. L. Wu, H. H. Musa, G. Q. Zhu and G. H. Chen.2008. Genetic variation at the alpha-1-fucosyltransferase (FUT1) gene in Asian wild boar and Chinese and Western commercial pig breeds. J. Anim. Breed. Genet. 125:427-430. https://doi.org/10.1111/j.1439-0388.2008.00722.x
  2. Bertschinger, H. U., M. Bachmann, C. Mettler, A. Pospischil, E. M.Schraner, M. Stamm, T. Sydler and P. Wild. 1990. Adhesive fimbriae produced in vivo by Escherichia coli O139:K12(B):H1 associated with enterotoxaemia in pigs. Vet. Microbiol. 25:267-281. https://doi.org/10.1016/0378-1135(90)90083-8
  3. Bertschinger, H. U., V. Nief and H. Tschape. 2000. Active oral immunization of suckling piglets to prevent colonization afterweaning by enterotoxigenic Escherichia coli with fimbriae F18. Vet. Microbiol. 71:255-267. https://doi.org/10.1016/S0378-1135(99)00166-2
  4. Bertschinger, H. U., M. Stamm and P. Vogeli. 1993. Inhetirance of resistance to oedema disease in the pig: experiments with an Escherichia coli strain expressing fimbriae 107. Vet. Microbiol. 35:79-89. https://doi.org/10.1016/0378-1135(93)90117-P
  5. Bosworth, B. T., E. A. Dean-Nystrom, T. A. Casey and H. L.Neibergs. 1998. Differentiation of $F18ab^{+}$ from $F18ac^{+}$ Escherichia coli by single-strand conformational polymorphism analysis of the major fimbrial subunit gene (fedA). Clin. Diagn. Lab. Immunol. 5:299-302.
  6. Bosworth, B. T. and P. Vogeli. 2002. Methods to identify swine genetically resistant to F18 E. coli associated diseases. United States Patent Application Publication, Pub. No: US 2002/0133836 A1.
  7. Cheng, D. R., H. C. Sun, J. S. Xu and S. Gao. 2005. Prevalence of Fimbial colonization factors F18ab and F18ac in Escherichia coli isolates from weaned piglets with edema and/or diarrhea in China. Vet. Microbiol. 110:35-39. https://doi.org/10.1016/j.vetmic.2005.06.006
  8. Fairbrother, M., E. Nadeau and C. L. Gyles. 2005. Escherichia coli in postweaning diarrhea in pigs: an update on bacterial types, pathpgenesis, and prevention strategies. Anim. Health Res. Rev. 6:17-39. https://doi.org/10.1079/AHR2005105
  9. Frydendahl, K., T. K. Jensen, J. S. Andersen, M. Fredholm and G.Evans. 2003. Association between the porcine Escherichia coli F18 receptor genotype and phenotype and suecetibility to colonidation and postweaning diarrhea caused by E. coli O138:F18. Vet. Microbiol. 93:39-51. https://doi.org/10.1016/S0378-1135(02)00348-6
  10. He, W. M., Y. F. Jiang, W. H. Luo, J. W. Huang, Y. J. Zhang, M. Q. Li and B. Z.Liu. 2001. Pathogenic diagnosis and epidemiological investigation on edema disease of pigs. Acta. Agri. Boreali-occidentails Sinica. 10:1-5.
  11. Horak, P., T. Urban and J. Dvorak. 2005. The FUT1 and ESR genes-their variability and associations with reproduction in Prestice Black-Pied sows. J. Anim. Breed. Genet. 122:210-213. https://doi.org/10.1111/j.1439-0388.2005.00502.x
  12. Imberechts, H., H. D. Greve, C. Schlicker, H. Bouchet, P. Pohl, G.Charlier, H. U. Bertschinger, P. Wild, J. Vandekerckhove and L. V. Damme. 1992a. Characterization of F107 fimbriae of Escherichia coli 107/86, which causes oedema disease in pigs, and nucleotide sequence of F107 major fimbrial subunit gene, fedA. Infect. Immun. 60:1963-1971.
  13. Imberechts, H., H. D. Greve and P. Lintermans. 1992b. The pathogenesis of edema disease in pigs: a review. Vet. Microbiol. 31:221-233. https://doi.org/10.1016/0378-1135(92)90080-D
  14. Jiang, X. P., Y. G. Liu, Y. Z. Xiong and C. Y. Deng. 2005. Effects of FUT1 gene on meat quality and carcass traits in swine. Hereditas (Beijing). 27:566-570.
  15. Kadarmideen, H. N. 2008. Biochemical, ECF18R, and RYR1 gene polymorphisms and their associations with osteochondral disease and production traits in pigs. Biochem. Genet. 46:41-53. https://doi.org/10.1007/s10528-007-9127-5
  16. Klukowska, J., B. Urbaniak and M. Swironeki. 1999. High frequency of $M^{307}$ mutation at FUT1 locus, causing resistance to oedema disease, in an autochtonous Polish pig breed, the Zlotnicka Spotted. J. Anim. Breed. Genet. 116:519-524. https://doi.org/10.1046/j.1439-0388.1999.00225.x
  17. Koh, S. Y., S. Geogre, V. Brozel, R. Moxley, D. Francis and R. S.Kaushik. 2008. Porcine intestinal epithelial cell lines as a new in vitro model for studing adherence and pathogenesis of enterotoxigenic Escherichia coli. Vet. Microbiol. 130:191-197. https://doi.org/10.1016/j.vetmic.2007.12.018
  18. Li, Y. H., X. T. Qiu, H. J. Li and Q. Zhang. 2007. Adhesive patterns of Escherichia coli F4 in piglets of three breeds. J. Genet. Genomics 34:591-599. https://doi.org/10.1016/S1673-8527(07)60067-8
  19. Meijerink, E., R. Fries, P. Vogeli, J. Masabanda, G. Stricker, S.Neuenschwander, H. U. Bertschinger and G. Stranzinger. 1997. Two $\alpha$(1,2) fucosyltransferase genes on porcine Chromosome 6p11 are closely linked to the blood group inhibitor (S) and Escherichia coli F18 receptor (ECF18R) loci. Mamm. Genome. 8:736-741. https://doi.org/10.1007/s003359900556
  20. Meijerink, E., S. Neuenschwander, R. Fries, A. Dinter, H. U.Bertschinger, G. Stranzinger and P. Vogeli. 2000. A DNA polymorphism influencing $\alpha$(1, 2)fucosyltransferase activity of the pig FUT1 enzyme determines susceptibility of small intestinal epithelium to Escherichia coli F18 adhesion. Immunogenetics 52:129-136. https://doi.org/10.1007/s002510000263
  21. Nagy, B., L. H. Arp, H. W. Moon and T. A. Casey. 1992.Colonization of the small intestine of weaned pigs by enterotoxigenic Escherichia coli that lack known colonization factors. Vet. Pathol. 29:239-246. https://doi.org/10.1177/030098589202900308
  22. Nagy, B., S. C. Whipp, H. Imberechts, H. U. Bertschinger, E. A.Dean-Nystrom, T. A. Casey and E. Salajka. 1997. Biological relationship between F18ab and F18ac fimbriae of enterotoxigenic and verotoxigenic Escherichia coli from weaned pigs with oedema disease or diarrhoea. Micob. Pathog. 22:1-11. https://doi.org/10.1006/mpat.1996.0085
  23. Rippinger, P., H. U. Bertschinger, H. Imberechts, B. Nagy, I. Sorg, M. Stamm, P. Wild and W. Wittig. 1995. Designations F18ab and F18ac for related fimbria types F107 2134P and 8813 of Escherichia coli from porcine postweaning diarrhea and from oedema disease. Vet. Microbiol. 45:281-295. https://doi.org/10.1016/0378-1135(94)00141-I
  24. Sambrook, J. and D. W. Russell. 2002. Molecular clong: a laboratory manual. 3rd ed. Cold Spring Harbor Laboratory Press, New York, pp. 463-470.
  25. Sellwood, R., R. A. Gibbons, G. W. Jones and J. M. Rutter. 1975. Adhesion of enteropathogenic Escherichia coli to pig intestinal brush borders: the existence of two pig phenotypes. J. Med. Microbiol. 8:405-411. https://doi.org/10.1099/00222615-8-3-405
  26. Shi, Q. S., S. Q. Huang, X. C. Liu, C. Q. He and J. Jiang. 2003. Polymorphism of E. coli F18 receptor gene in different pig breeds. J. Genet. Genomics 30:221-224.
  27. Tiels, P., F. Verdonck, A. Coddens, B. Godderis and E. Cox. 2008. The excretion of $F18^{+}$ E.coli is reduced after oral immunisation of pigs with a FedF and F4 fimbriae conjugate. Vaccine 26:2154-2163. https://doi.org/10.1016/j.vaccine.2008.01.054
  28. Verdonck, F., P. Tiels, K. V. Gog, B. M. Goddeeris, N. Lycke, J. Clements and E. Cox. 2007. Mucosal immunization of piglets with purified F18 fimbriae does not protect against $F18^{+}$ Escherichia coli infection. Vet. Immunol. Immunopathol. 120:69-79. https://doi.org/10.1016/j.vetimm.2007.06.018
  29. Vogeli, P., H. U. Bertschinger, M. Stamm, C. Stricker, C. Hagger,R. Fries, J. Rapacz and G. Stranzinger. 1996. Genes specifying receptors for F18 fimbriated Escherichia coli, causing oedema disease and postweaning diarrhea in pigs, map to chromosome 6. Anim. Genet. 27:321-328.
  30. Vogeli, P., E. Meijerink, R. Fries, S. Neuenschwander, N.Vorlander, G. Stranzinger and H. U. Bertschinger. 1997. A molecular test for the detection of E. coli F18 receptors: a breakthrough in the struggle against oedema and post-weaning diarrhea in swine. Schweiz. Arch. Tierheikd. 139:479-484.
  31. Witting, W., R. Prager, M. Stamm, W. Streckel and H. Rschape.1994. Expression and plasmid transfer of genes coding for the fimbrial antigen F107 in porcine Escherichia coli strains. Zentralbl. Bakteriol. 281:130-139. https://doi.org/10.1016/S0934-8840(11)80563-3
  32. Yan, X. M., J. Ren, Y. M. Guo, N. S. Ding, K. F. Chen, J. Gao, H.S. Ai, G. Y. Chen, J. W. Ma and L. S. Huang. 2003. Research on the genetic variations of ${\alpha}1$-fucosytransferase (FUT1) gene in 26 pig breeds. J. Genet. Genomics 30:830-834.

Cited by

  1. Influences Which Affect Reproductive Characters of Sows in Studied Reproductive Breeding vol.64, pp.5, 2016, https://doi.org/10.11118/actaun201664051653
  2. Differential gene expression profiling of porcine epithelial cells infected with three enterotoxigenic Escherichia coli strains vol.13, pp.None, 2010, https://doi.org/10.1186/1471-2164-13-330
  3. Whole genome SNPs discovery in Nero Siciliano pig vol.42, pp.3, 2010, https://doi.org/10.1590/1678-4685-gmb-2018-0169
  4. Resistance to ETEC F4/F18-mediated piglet diarrhoea: opening the gene black box vol.51, pp.6, 2010, https://doi.org/10.1007/s11250-019-01934-x
  5. Polymorphism of the alpha-1-fucosyltransferase (FUT1) gene in several wild boar (Sus scrofa) populations in France and link to edema disease vol.131, pp.None, 2010, https://doi.org/10.1016/j.rvsc.2020.03.025
  6. Growth performance and gut health of Escherichia coli-challenged weaned pigs fed canola meal-containing diet vol.99, pp.8, 2010, https://doi.org/10.1093/jas/skab196