DOI QR코드

DOI QR Code

Cloning and Distribution of Facilitative Glucose Transporter 2 (SLC2A2) in Pigs

  • Zuo, Jianjun (College of Animal Science, South China Agricultural University) ;
  • Huang, Zhiyi (College of Animal Science, South China Agricultural University) ;
  • Zhi, Aimin (College of Animal Science, South China Agricultural University) ;
  • Zou, Shigeng (College of Animal Science, South China Agricultural University) ;
  • Zhou, Xiangyan (College of Animal Science, South China Agricultural University) ;
  • Dai, Fawen (College of Animal Science, South China Agricultural University) ;
  • Ye, Hui (College of Animal Science, South China Agricultural University) ;
  • Feng, Dingyuan (College of Animal Science, South China Agricultural University)
  • Received : 2009.10.22
  • Accepted : 2009.12.30
  • Published : 2010.09.01

Abstract

Glucose is the main energy source for mammalian cells and its absorption is co-mediated by two different families of glucose transporters, sodium/glucose co-transporters (SGLTs) and facilitative glucose transporters (GLUTs). Here, we report the cloning and tissue distribution of porcine GLUT2. The GLUT2 was cloned by RACE and its cDNA was 2,051 bp long (GenBank accession no. EF140874). An AAATAA consensus sequence at nucleotide positions 1936-1941 was located upstream of the poly $(A)^+$ tail. Open reading frame analysis suggested that porcine GLUT2 contained 524 amino acids, with molecular weight of 57 kDa. The amino acid sequence of porcine GLUT2 was 87% and 79.4% identical with human and mouse GLUT2, respectively. GLUT2 mRNA was detected at highest level in porcine liver, at moderate levels in the small intestine and kidney, and at low levels in the brain, lung, muscle and heart. In the small intestine, the highest level was in the jejunum. In conclusion, the mRNA expression of GLUT2 was not only differentially regulated by age, but also differentially distributed along the small intestine of piglets, which may be related to availability of different intestinal luminal substrate concentrations resulting from different food sources and digestibility.

Keywords

References

  1. Affleck, J. A., P. A. Helliwell and G. L. Kellett. 2003. Immunocytochemical detection of GLUT2 at the rat intestinal brush-border membrane. J. Histochem. Cytochem. 51:1567-1574. https://doi.org/10.1177/002215540305101116
  2. Arluison, M., M. Quignon, P. Nguyen, B. Thorens, C. Leloup and L. Penicaud. 2004. Distribution and anatomical localization of the glucose transporter 2 (GLUT2) in the adult rat brain-an immunohistochemical study. J. Chem. Neuroanat. 28:117-136. https://doi.org/10.1016/j.jchemneu.2004.05.009
  3. Bell, G. I., C. F. Burant, J. Taked and G. W. Gould. 1993. Structure and function of mammalian facilitative sugar transporters. J. Biol. Chem. 268:19161-19164.
  4. Castillo, J., D. Crespo, E. Capilla, M. Diaz, F. Chauvigne, J. Cerda and J. V. Planas. 2009. Evolutionary structural and functional conservation of an ortholog of the GLUT2 glucose transporter gene (SLC2A2) in zebrafish. Am. J. Physiol. Regul. Integr. Comp. Physiol. 297:R1570-1581. https://doi.org/10.1152/ajpregu.00430.2009
  5. Cherbuy, C., B. Darcy-Vrillon, L. Posho, P. Vaugelade, M. T. Morel and F. Bernard. 1997. GLUT2 and hexokinase control proximodistal gradient of intestinal glucose metabolism in the newborn pig. Am. J. Physiol. Gastrointest. Liver Physiol. 272:G1530-1539.
  6. Fukumoto, H., S. Seino, H. Imura, Y. Seino, R. L. Eddy and Y. Fukushima. 1988. Sequence, tissue distribution, and chromosomal localization of mRNA encoding a human glucose transporter-like protein. Proc. Natl. Acad. Sci. 85:5434-5438. https://doi.org/10.1073/pnas.85.15.5434
  7. Gilbert, E. R., H. Li, D. A. Emmerson, K. E. Jr. Webb and E. A. Wong. 2007. Developmental regulation of nutrient transporter and enzyme mRNA abundance in the small intestine of broilers. Poult. Sci. 86:1739-1753. https://doi.org/10.1093/ps/86.8.1739
  8. Gouyon, F., L. Caillaud, V. Carriere, C. Klein, V. Dalet and D. Citadelle. 2003. Simple-sugar meals target GLUT2 at enterocyte apical membranes to improve sugar absorption: a study in GLUT2-null mice. J. Physiol. 552:823-832. https://doi.org/10.1113/jphysiol.2003.049247
  9. Joost, H. and B. Thorens. 2001. The extended GLUT-family of sugar/polyol transport facilitators: nomenclature, sequence characteristics, and potential function of its novel members (review). Mol. Membr. Biol. 18:247-256. https://doi.org/10.1080/09687680110090456
  10. Kellett, G. L. and E. Brot-Laroche. 2005. Apical GLUT2: a major pathway of intestinal sugar absorption. Diabetes 54:3056-62. https://doi.org/10.2337/diabetes.54.10.3056
  11. Livak, K. J. and T. D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402-408. https://doi.org/10.1006/meth.2001.1262
  12. Medina, R. A., E. Baker, B. Philips, A. Woollhead and D. Baines. 2006. Glucose transport in H441 lung epithelial cells. FASEB J. 20(4):A348-A348.
  13. Natalizio, B. J., L. C. Muniz, G. K. Arhin, J. Wilusz and C. S. Lutz. 2002. Upstream elements present in the 3'-untranslated region of collagen genes influence the processing efficiency of overlapping polyadenylation signals. J. Biol. Chem. 277:42733-42740. https://doi.org/10.1074/jbc.M208070200
  14. Owens, J. A., M. L. Harland, M. J. De Blasio, K. L. Gatford, D. Crosby, A. Hoey and J. S. Robinson. 2007. Restriction of placental and fetal growth reduces expression of insulin signalling and glucose transporter genes in skeletal muscle of young lambs. Early Hum. Dev. 83:S134-S134.
  15. Seki, Y., J. R. Berggren, J. A. Houmard and M. J. Charron. 2006. Glucose transporter expression in skeletal muscle of endurance-trained individuals. Med. Sci. Sports Exerc. 38:1088-1092. https://doi.org/10.1249/01.mss.0000222837.74015.f1
  16. Scheepers, A., H. G. Joost and A. Schurmann. 2004. The glucose transporter families SGLT and GLUT: molecular basis of normal and aberrant function. JPEN J. Parenter. Enteral. Nutr. 28:364-371. https://doi.org/10.1177/0148607104028005364
  17. Thorens, B., H. K. Sarkar, H. R. Kaback and H. F. Lodish. 1988. Cloning and functional expression in bacteria of a novel glucose transporter present in liver, intestine, kidney, and beta-pancreatic islet cells. Cell 55:281-290. https://doi.org/10.1016/0092-8674(88)90051-7
  18. Uldry, M., M. Ibberson, M. Hosokawa and B. Thorens. 2002. GLUT2 is a high affinity glucosamine transporter. FEBS Lett. 524:199-203. https://doi.org/10.1016/S0014-5793(02)03058-2
  19. Wood, I. S. and P. Trayhurn. 2003. Glucose transporters (GLUT and SGLT): expanded families of sugar transport proteins. Br. J. Nutr. 89:3-9.
  20. Wright, E. M., D. D. F. Loo, B. A. Hirayama and E. Turk. 2004. Surprising versatility of Na+-glucose cotransporters: SLC5. Physiol. 19:370-376. https://doi.org/10.1152/physiol.00026.2004
  21. Zhao, F. Q. and A. F. keating. 2007. Functional properties and genomics of glucose transporters. Curr. Genomics 8(2):113-128. https://doi.org/10.2174/138920207780368187
  22. Zhou, L., E. V. Cryan, M. R. D'Andrea, S. Belkowski, B. R. Conway and K. T. Demarest. 2003. Human cardiomyocytes express high level of Na+/glucose cotransporter 1 (SGLT1). J. Cell Biochem. 90:339-346. https://doi.org/10.1002/jcb.10631

Cited by

  1. The relationship between villous height and growth performance, small intestinal mucosal enzymes activities and nutrient transporters expression in weaned piglets vol.104, pp.2, 2010, https://doi.org/10.1111/jpn.13299