DOI QR코드

DOI QR Code

Repeated Random Mutagenesis of ${\alpha}$-Amylase from Bacillus licheniformis for Improved pH Performance

  • Priyadharshini, Ramachandran (Department of Genetics, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University) ;
  • Manoharan, Shankar (Department of Genetics, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University) ;
  • Hemalatha, Devaraj (Department of Genetics, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University) ;
  • Gunasekaran, Paramasamy (Department of Genetics, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University)
  • Received : 2010.08.11
  • Accepted : 2010.08.31
  • Published : 2010.12.28

Abstract

The ${\alpha}$-amylases activity was improved by random mutagenesis and screening. A region comprising residues from the position 34-281 was randomly mutated in B. licheniformis ${\alpha}$-amylase (AmyL), and the library with mutations ranging from low, medium, and high frequencies was generated. The library was screened using an effective liquid-phase screening method to isolate mutants with an altered pH profile. The sequencing of improved variants indicated 2-5 amino acid changes. Among them, mutant TP8H5 showed an altered pH profile as compared with that of wild type. The sequencing of variant TP8H5 indicated 2 amino acid changes, Ile157Ser and Trp193Arg, which were located in the solvent accessible flexible loop region in domain B.

Keywords

References

  1. Arnold, F. H. and A. A. Volkov. 1999. Directed evolution of biocatalysts. Curr. Opin. Chemi Biol. 3: 54-59. https://doi.org/10.1016/S1367-5931(99)80010-6
  2. Arnold, K. L., J. K. Bordoli, and T. Schwede. 2006. The SWISS-MODEL Workspace: A Web-based environment for protein structure homology modelling. Bioinformatics 22: 195-201. https://doi.org/10.1093/bioinformatics/bti770
  3. Bessler, C., J. Schmitt, K. H. Maurer, and R. Schmid. 2003. Directed evolution of a bacterial $\alpha$-amylase: Towards enhanced pH-performance and higher specific activity. Prot. Sci. 12: 2141-2149.
  4. Bisgaard-Frantzen, H., A. Svendsen, B. Norman, S. Pedersen, S. Kjærulff, H. Outtrup, and T. V. Borchert. 1999. Development of industrially important $\alpha$-amylases. J. Appl. Glycosci. 46: 199-206. https://doi.org/10.5458/jag.46.199
  5. Cadwell, R. C. and G. F. Joyce.1994. Mutagenic PCR. PCR Methods Appl. 3: 136-140. https://doi.org/10.1101/gr.3.6.S136
  6. Conrad, B., V. Hoang, A. Polley, and J. Hofemeister. 1995. Hybrid Bacillus amyloliquefaciens ${\times}$ Bacillus licheniformis alpha-amylases. Construction, properties and sequence determinants. Eur. J. Biochem. 230: 481-490.
  7. DeLano, W. L. 2003. PyMOL Reference Manual. DeLano Scientific LLC, San Carlos, CA.
  8. Demirjian, D. C., F. Moris-Varas, and C. S. Cassidy. 2001. Enzymes from extremophiles. Curr. Opin. Chem. Biol. 5: 144-151. https://doi.org/10.1016/S1367-5931(00)00183-6
  9. Emond, S., G. Potocki-Veronese, P. Mondon, K. Bouayadi, H. Kharrat, P. Monsan, and M. Remaud-Simeon. 2007. Optimized and automated protocols for high-throughput screening of amylosucrase libraries. J. Biomol. Screen. 12: 715-723. https://doi.org/10.1177/1087057107301978
  10. Fushinobu, S., K. Ito, M. Konno, T. Wakagi, and H. Matsuzawa. 1998. Crystallographic and mutational analyses of an extremely acidophilic and acid-stable xylanase: Biased distribution of acidic residues and importance of Asp37 for catalysis at low pH. Prot. Eng. 11: 1121-1128. https://doi.org/10.1093/protein/11.12.1121
  11. Hagihara, H., K. Igarashi, Y. Hayashi, K. Endo, K. Ikawa-Kitayama, K .Ozaki, S. Kawai, and S. Ito. 2001. Novel alpha-amylase that is highly resistant to chelating reagents and chemical oxidants from the alkaliphilic Bacillus isolate KSM-K38. Appl. Environ. Microbiol. 67: 1744-1750. https://doi.org/10.1128/AEM.67.4.1744-1750.2001
  12. Igarashi, K., Y. Hatada, K. Ikawa, H. Araki, T. Ozawa, T. Kobayashi, K. Ozaki, and S. Ito. 1998. Improved thermostability of a Bacillus $\alpha$-amylase by deletion of an arginine-glycine residue is caused by enhanced calcium binding. Biochem. Biophys. Res. Commun. 248: 372-377. https://doi.org/10.1006/bbrc.1998.8970
  13. Jones, A., M. Lamsa, T. P. Frandsen, T. Spendler, P. Harris, A. Sloma, F. Xu, J. B. Nielsen, and J. R. Cherry. 2008. Directed evolution of a maltogenic alpha-amylase from Bacillus sp. TS-25. J. Biotechnol. 134: 325-333. https://doi.org/10.1016/j.jbiotec.2008.01.016
  14. Joyet, P., N. Declerck, and C. Gaillardin. 1992. Hyperthermostable variants of a highly thermostable $\alpha$-amylase. Biotechnology 10: 1579-1583. https://doi.org/10.1038/nbt1292-1579
  15. Keohavong, P. and W. G. Thilly. 1989. Fidelity of DNA polymerases in DNA amplification assay: Denaturing gradient gel electrophoresis. Proc. Natl. Acad. Sci. U.S.A. 86: 9253-9257. https://doi.org/10.1073/pnas.86.23.9253
  16. Kim, Y. W., J. H. Choi, J. W. Kim, C. Park, J. W. Kim, H. Cha, et al. 2003. Directed evolution of Thermus maltogenic amylase toward enhanced thermal resistance. Appl. Environ. Microbiol. 69: 4866-4874. https://doi.org/10.1128/AEM.69.8.4866-4874.2003
  17. Lee, S., Y. Mouri, M. Minoda, H. Oneda, and K. Inouye. 2006. Comparison of the wild-type-amylase and its variant enzymes in Bacillus amyloliquefaciens in activity and thermal stability, and insights into engineering the thermal stability of Bacillusamylase. J. Biochem. 139: 1007-1015. https://doi.org/10.1093/jb/mvj107
  18. Miller, L. H. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 246-248.
  19. Nielsen, J., E. Torben, V. Borchert, and V. Gerrit. 2001. The determinants of $\alpha$-amylase pH-activity profiles. Prot. Eng. 14: 505-512. https://doi.org/10.1093/protein/14.7.505
  20. Priyadharshini, R. and P. Gunasekaran. 2007. Site-directed mutagenesis of the calcium binding site of $\alpha$-amylase of Bacillus licheniformis. Biotech. Lett. 29: 1493-1499. https://doi.org/10.1007/s10529-007-9428-0
  21. Richardson, T. H., T. Xuqiu, F. Gerhard, C. Walter, C. Mark, L. David, et al. 2002. A novel, high performance enzyme for starch liquefaction. J. Biol. Chem. 277: 26501-26507. https://doi.org/10.1074/jbc.M203183200
  22. Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, New York.
  23. Schafer, K., U. Magnusson, F. Scheffel, A. Schiefner, M. O. Sandgren, K. Diederichs, et al. 2004. X-Ray structures of the maltose-maltodextrin-binding protein of the thermoacidophilic bacterium Alicyclobacillus acidocaldarius provide insight into acid stability of proteins. J. Mol. Biol. 335: 261-274. https://doi.org/10.1016/j.jmb.2003.10.042
  24. Schwede, T., J. Kopp, N. Guex, and M. C. Peitsch. 2003. SWISS-MODEL - An automated protein homology-modeling server. Nucl. Acids Res. 31: 3381-3385. https://doi.org/10.1093/nar/gkg520
  25. Shankar, M., R. Priyadharshini, and P. Gunasekaran. 2009. Quantitative digital image analysis of chromogenic assays for high throughput screening of alpha-amylase mutant libraries. Biotech. Lett. 31: 1197-1201. https://doi.org/10.1007/s10529-009-9999-z
  26. Sheryl, B., P. Rubin, and H. Zhao. 2006. Recent advances in biocatalysis by directed enzyme evolution. Combin. Chem. High Through. Screen. 7: 480-485.
  27. Suzuki, Y., N. Ito, T. Yuuki, H. Yamagata, and S. Udaka. 1989. Amino acid residues stabilizing a Bacillus alpha-amylase against irreversible thermoinactivation. J. Biol. Chem. 15: 18933-18938.
  28. Van der Maarel, M. J. E. C, B. van der Veen, J. C. M. Uitdehaag, H. Leemhuis, and L. Dijkhuizen. 2002. Properties and applications of starch converting enzymes of the $\alpha$-amylase family. J. Biotechnol. 94: 137-155. https://doi.org/10.1016/S0168-1656(01)00407-2
  29. Voigt, C. A., S. L. Mayo, F. H. Arnold, and Z. G. Wang. 2001. Computational method to reduce the search space for directed protein evolution. Proc. Natl. Acad. Sci. U.S.A. 98: 3778-3783. https://doi.org/10.1073/pnas.051614498
  30. Wong, D. W. S., S. B. Batt, C. C. Lee, and G. H. Robertson. 1999. High-activity barley $\alpha$-amylase by directed evolution. Prot. J. 23: 453-460.

Cited by

  1. A Highly Active Alpha Amylase from Bacillus licheniformis: Directed Evolution, Enzyme Characterization and Structural Analysis vol.24, pp.7, 2010, https://doi.org/10.4014/jmb.1402.02004
  2. Characterization of novel insect associated peptidases for hydrolysis of food proteins vol.240, pp.2, 2010, https://doi.org/10.1007/s00217-014-2342-5
  3. An Insight Into Ameliorating Production, Catalytic Efficiency, Thermostability and Starch Saccharification of Acid-Stable α-Amylases From Acidophiles vol.6, pp.None, 2010, https://doi.org/10.3389/fbioe.2018.00125