DOI QR코드

DOI QR Code

Bioproduction and Anticancer Activity of Biosurfactant Produced by the Dematiaceous Fungus Exophiala dermatitidis SK80

  • Received : 2010.07.23
  • Accepted : 2010.08.30
  • Published : 2010.12.28

Abstract

A new biosurfactant producer was isolated from palm-oil-contaminated soil and later identified through morphology and DNA sequencing as the yeast-like fungus Exophiala dermatitidis. Biosurfactant production was catalyzed by vegetable oil, supplemented with a basal medium. The culture conditions that provided the biosurfactant with the highest surface activity were found to be 5% palm oil with 0.08% $NH_4NO_3$, at a pH of 5.3, with shaking at 200 rpm, and a temperature of $30^{\circ}C$ for a 14-day period of incubation. The biosurfactant was purified, in accordance with surfactant properties, by solvent fractionation using silica gel column chromatography. The chemical structure of the strongest surface-active compound was elucidated through the use of NMR and mass spectroscopy, and noted to be monoolein, which then went on to demonstrate antiproliferative activity against cervical cancer (HeLa) and leukemia (U937) cell lines in a dose-dependent manner. Interestingly, no cytotoxicity was observed with normal cells even when high concentrations were used. Cell and DNA morphological changes, in both cancer cell lines, were observed to be cell shrinkage, membrane blebbling, and DNA fragmentation.

Keywords

References

  1. Altschul, S. F., T. L. Madden, A. A. Schäffer, J. Zhang, Z. Zhang, W. Miller, et al. 1997. Gapped BLAST and PSIBLAST: A new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402. https://doi.org/10.1093/nar/25.17.3389
  2. Banat, I. M., A. Franzetti, I. Gandolfi, G. Bestetti, M. G. Martinotti, L. Fracchia, T. J. Smith, and R. Marchant. 2010. Microbial biosurfactants production, applications and future potential. Appl. Microbiol. Biotechnol. 87: 427-444. https://doi.org/10.1007/s00253-010-2589-0
  3. Bergsson, G., O. Steingrimsson, and H. Thormar. 2002. Bactericidal effects of fatty acids and monoglycerides on Helicobacter pylori. Int. J. Antimicrob. Agents. 20: 258-262. https://doi.org/10.1016/S0924-8579(02)00205-4
  4. Bodour, A. A. and R. M. Miller-Maier. 1998. Application of modified drop-collapse technique for surfactant quantitation and screening of biosurfactant-producing microorganisms. J. Microbiol. Methods 32: 273-280. https://doi.org/10.1016/S0167-7012(98)00031-1
  5. Cameotra, S. S. and P. Singh. 2009. Synthesis of rhamnolipid biosurfactant and mode of hexadecane uptake by Pseudomonas species. Microb. Cell Fact. 8: 16-22. https://doi.org/10.1186/1475-2859-8-16
  6. Camilios, N. D., J. A. Meira, J. M. De Araujo, D. A. Mitchell, and N. Krieger. 2008. Optimization of the production of rhamnolipids by Pseudomonas aeruginosa UFPEDA 614 in solid-state culture. Appl. Microbiol. Biotechnol. 81: 441-448. https://doi.org/10.1007/s00253-008-1663-3
  7. Elfman-Borjesson, I. and M. Harrod. 1999. Synthesis of monoacylglycerides by glycerolysis of rapeseed oil using immobilized lipase. J. Am. Chem. Oil Soc. 76: 701-707. https://doi.org/10.1007/s11746-999-0162-8
  8. Flis, S., A. Gnyszka, I. Misiewicz-Krzeminska, and J. Splawinski. 2009. Decytabine enhances cytotoxicity induced by oxaliplatin and 5-fluorouracil in the colorectal cancer cell line Colo-205. Cancer Cell Int. 27: 1-10.
  9. Goh, E. M. and R. E. Timms. 1985. Determination of monoand diglycerides in palm oil, olein and stearin. J. Am. Oil Chem. Soc. 62: 730-734. https://doi.org/10.1007/BF03028741
  10. Holcapek, M., P. Jandera, J. Fischer, and B. Prokes. 1999. Analytical monitoring of the production of biodiesel by high-performance liquid chromatography with various detection methods. J. Chromatogr. A 858: 13-31. https://doi.org/10.1016/S0021-9673(99)00790-6
  11. Hou, Y., M. Wu, Y. Hwang, F. Chang, Y. Wu, and C. Wu. 2009. The natural diterpenoid ovatodiolide induces cell cycle arrest and apoptosis in human oral squamous cell carcinoma Ca9-22 cells. Life Sci. 3: 26-32.
  12. Isaacs, C. E., H. Thormar, K. S. Kim, W. C. Heird, and H. M. Wisniewski. 1989. Antiviral and antibacterial activity of fatty acids and monoglycerides. US Patent 4997851 WO/1989/006124A1
  13. Kitamoto, D., H. Isoda, and T. Nakahara. 2002. Functional and potential application of glycerol biosurfactants. J. Biosci. Bioeng. 94: 187-201.
  14. Kosaric, N., H. Y. Caoi, and R. Bhaszczyk. 1990. Biosurfactant production from Nocardia SFC-D. Tenside Surfact. Det. 27: 294-297.
  15. Patel, R. M. and A. J. Desai. 1997. Biosurfactant production by Pseudomonas aeruginosa GS3 from molasses. Lett. Appl. Microbiol. 25: 91-94. https://doi.org/10.1046/j.1472-765X.1997.00172.x
  16. Pornsunthorntawee, O., S. Maksung, O. Huayyai, R. Rujiravanit, and S. Chavadej. 2009. Biosurfactant production by Pseudomonas aeruginosa SP4 using sequencing batch reactors: Effects of oil loading rate and cycle time. Bioresour. Technol. 100: 812-818. https://doi.org/10.1016/j.biortech.2008.06.034
  17. Rahman, P. K. and E. Gakpe. 2008. Production, characterization and applications of biosurfactants - review. Biotechnology 7: 360-370. https://doi.org/10.3923/biotech.2008.360.370
  18. Saxena, R. K., P. K. Ghosh, R. Gupta, D. W. Sheba, S. Bradoo, and R. Gulati. 1999. Microbial lipases, potential biocatalysts for the future industry. Curr. Sci. 77: 101-115.
  19. Shougang, J., Z. Yuangang, F. Yuejie, Z. Yu, and E. Thomas. 2008. Activation of the mitochondria-driven pathway of apoptosis in human PC-3 prostate cancer cells by a novel hydrophilic paclitaxel derivative, 7-xylosyl-10-deacetylpaclitaxel. Int. J. Oncol. 33: 103-111.
  20. Singh, M., V. Saini, D. K. Adhikari, J. D. Desai, and V. R. Sista. 1990. Production of bioemulsifier by SCP production strain of Candida tropicalis during hydrocarbon fermentation. Biotechnol. Lett. 12: 743-746. https://doi.org/10.1007/BF01024732
  21. Sudhadham, M., S. Prakitsin, S. Sivichai, R. Chaiyarat, G. M. Dorrestein, S. B. J. Menken, and G. S. de Hoog. 2008. The neurotropic black yeast Exophiala dermatitidis has a possible origin in the tropical rain forest. Stud. Mycol. 61: 145-155. https://doi.org/10.3114/sim.2008.61.15
  22. Tatara, T., T. Fuji, T. Kawase, and M. Minagawa. 1983. Quantitative determination of tri-, di-, monooleins and free oleic acid by the thin layer chromatography flame ionization detector system using internal standards and boric acid impregnated chromarod. Lipids 18: 732-736. https://doi.org/10.1007/BF02534541
  23. Thanomsub, B., T. Watcharachaipong, K. Chotelersak, P. Arunrattiyakorn, and T. Nitoda. 2004. Monoacylglycerols: Glycolipid biosurfactants produced by a thermotolerant yeast, Candida ishiwadae. J. Appl. Microbiol. 96: 588-592. https://doi.org/10.1111/j.1365-2672.2004.02202.x
  24. Thormar, H., G. Bergsson, and E. Gunnarsson. 1999. Hydrogels containing monocaprin have potent microbicidal activities against sexually transmitted viruses and bacteria in vitro. Sex Transm. Infect. 75: 181-185. https://doi.org/10.1136/sti.75.3.181

Cited by

  1. Isolation and characterization of a biosurfactant-producingFusariumsp. BS-8 from oil contaminated soil vol.30, pp.5, 2014, https://doi.org/10.1002/btpr.1933
  2. Production and Biomedical Applications of Probiotic Biosurfactants vol.72, pp.4, 2010, https://doi.org/10.1007/s00284-015-0978-4
  3. Biological surface-active compounds from marine bacteria vol.37, pp.9, 2010, https://doi.org/10.1080/09593330.2015.1103784
  4. Development of glycolipid biosurfactant for inducing apoptosis in HeLa cells vol.6, pp.68, 2010, https://doi.org/10.1039/c6ra00805d
  5. Influence of micelle formation on the adsorption capacity of a biosurfactant extracted from corn on dyed hair vol.7, pp.27, 2017, https://doi.org/10.1039/c7ra01351e
  6. Anticancer Activities of Surfactin and Potential Application of Nanotechnology Assisted Surfactin Delivery vol.8, pp.None, 2010, https://doi.org/10.3389/fphar.2017.00761
  7. In Vitro and Ex Vivo Antibiofilm Activity of a Lipopeptide Biosurfactant Produced by the Entomopathogenic Beauveria bassiana Strain against Microsporum canis vol.8, pp.2, 2010, https://doi.org/10.3390/microorganisms8020232
  8. Biosurfactant from vaginal Lactobacillus crispatus BC1 as a promising agent to interfere with Candida adhesion vol.19, pp.None, 2020, https://doi.org/10.1186/s12934-020-01390-5
  9. Production of Biosurfactants by Ascomycetes vol.2021, pp.None, 2010, https://doi.org/10.1155/2021/6669263