DOI QR코드

DOI QR Code

Repressed Quorum Sensing by Overexpressing LsrR Hampers Salmonella Evasion from Oxidative Killing Within Macrophages

  • Choi, Jeong-Joon (Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Agricultural Biomaterials, and Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Park, Joo-Won (Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Agricultural Biomaterials, and Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Ryu, Sang-Ryeol (Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Agricultural Biomaterials, and Research Institute for Agriculture and Life Sciences, Seoul National University)
  • Received : 2010.08.30
  • Accepted : 2010.10.04
  • Published : 2010.12.28

Abstract

Bacterial cell-to-cell communication, termed quorum sensing (QS), leads to coordinated group behavior in a cell-density-dependent fashion and controls a variety of physiological processes including virulence gene expression. The repressor of the lsr operon, LsrR, is the only known regulator of LuxS/AI-2-mediated QS in Salmonella. Although lack of lsrR did not result in noticeable differences in Salmonella survival, the down-regulation of QS as a result of lsrR overexpression decreased Salmonella survival within macrophages. We found that impaired growth of Salmonella overexpressing lsrR within macrophages was due largely to its hypersensitivity to NADPH-dependent oxidative stress. This, in turn, was a result of decreased expression of genes involved in the oxidative stress response, such as sodA, sodCI, and sodCII, when lsrR was overexpressed. These results suggest that down-regulation of QS by excess LsrR can lower Salmonella virulence by hampering Salmonella evasion from oxidative killing within macrophages.

Keywords

References

  1. Ammendola, S., P. Pasquali, F. Pacello, G. Rotilio, M. Castor, S.J. Libby, et al. 2008. Regulatory and structural differences in the Cu,Zn-superoxide dismutases of Salmonella enterica and their significance for virulence. J. Biol. Chem. 283: 13688-13699. https://doi.org/10.1074/jbc.M710499200
  2. Chan, R. K., D. Botstein, T. Watanabe, and Y. Ogata. 1972. Specialized transduction of tetracycline resistance by phage P22 in Salmonella Typhimurium. II. Properties of a high-frequencytransducing lysate. Virology 50: 883-898. https://doi.org/10.1016/0042-6822(72)90442-4
  3. Chang, A. C. and S. N. Cohen. 1978. Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J. Bacteriol. 134: 1141-1156.
  4. Choi, J., D. Shin, and S. Ryu. 2007. Implication of quorum sensing in Salmonella enterica serovar Typhimurium virulence: The luxS gene is necessary for expression of genes in pathogenicity island 1. Infect. Immun. 75: 4885-4890. https://doi.org/10.1128/IAI.01942-06
  5. Chun, H., O. Choi, E. Goo, N. Kim, H. Kim, Y. Kang, J. Kim, J. Moon, and I. Hwang. 2009. The quorum sensing-dependent gene katG of Burkholderia glumae is important for protection from visible light. J. Bacteriol. 191: 4152-4157. https://doi.org/10.1128/JB.00227-09
  6. Craig, M. and J. M. Slauch. 2009. Phagocytic superoxide specifically damages an extracytoplasmic target to inhibit or kill Salmonella. PLoS One 4: e4975. https://doi.org/10.1371/journal.pone.0004975
  7. Datsenko, K. A. and B. L. Wanner. 2000. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. U.S.A. 97: 6640-6645. https://doi.org/10.1073/pnas.120163297
  8. Dunny, G. M. and B. A. Leonard. 1997. Cell-cell communication in Gram-positive bacteria. Annu. Rev. Microbiol. 51: 527-564. https://doi.org/10.1146/annurev.micro.51.1.527
  9. Ellermeier, C. D., A. Janakiraman, and J. M. Slauch. 2002. Construction of targeted single copy lac fusions using lambda Red and FLP-mediated site-specific recombination in bacteria. Gene 290: 153-161. https://doi.org/10.1016/S0378-1119(02)00551-6
  10. Janssen, R., T. van der Straaten, A. van Diepen, and J. T. van Dissel. 2003. Responses to reactive oxygen intermediates and virulence of Salmonella Typhimurium. Microbes Infect. 5: 527-534. https://doi.org/10.1016/S1286-4579(03)00069-8
  11. Li, J., C. Attila, L. Wang, T. K. Wood, J. J. Valdes, and W. E. Bentley. 2007. Quorum sensing in Escherichia coli is signaled by AI-2/LsrR: Effects on small RNA and biofilm architecture. J. Bacteriol. 189: 6011-6020. https://doi.org/10.1128/JB.00014-07
  12. Lucas, R. L. and C. A. Lee. 2000. Unravelling the mysteries of virulence gene regulation in Salmonella Typhimurium. Mol. Microbiol. 36: 1024-1033. https://doi.org/10.1046/j.1365-2958.2000.01961.x
  13. Lumjiaktase, P., S. P. Diggle, S. Loprasert, S. Tungpradabkul, M. Daykin, M. Camara, P. Williams, and M. Kunakorn. 2006. Quorum sensing regulates dpsA and the oxidative stress response in Burkholderia pseudomallei. Microbiology 152: 3651-3659. https://doi.org/10.1099/mic.0.29226-0
  14. Miller, J. H. 1972. Experiments in Molecular Genetics. Cold Spring Harbor Laboratory Press, Plainview, NY.
  15. Perrett, C. A., M. H. Karavolos, S. Humphrey, P. Mastroeni, I. Martinez-Argudo, H. Spencer, et al. 2009. LuxS-based quorum sensing does not affect the ability of Salmonella enterica serovar Typhimurium to express the SPI-1 type 3 secretion system, induce membrane ruffles, or invade epithelial cells. J. Bacteriol. 191: 7253-7259. https://doi.org/10.1128/JB.00727-09
  16. Pomposiello, P. J. and B. Demple. 2000. Identification of SoxSregulated genes in Salmonella enterica serovar Typhimurium. J. Bacteriol. 182: 23-29. https://doi.org/10.1128/JB.182.1.23-29.2000
  17. Pontes, M. H., M. Babst, R. Lochhead, K. Oakeson, K. Smith, and C. Dale. 2008. Quorum sensing primes the oxidative stress response in the insect endosymbiont, Sodalis glossinidius. PLoSOne 3: e3541.
  18. Soncini, F. C., E. G. Vescovi, and E. A. Groisman. 1995. Transcriptional autoregulation of the Salmonella Typhimurium phoPQ operon. J. Bacteriol. 177: 4364-4371.
  19. Taga, M. E., S. T. Miller, and B. L. Bassler. 2003. Lsr-mediated transport and processing of AI-2 in Salmonella Typhimurium. Mol. Microbiol. 50: 1411-1427. https://doi.org/10.1046/j.1365-2958.2003.03781.x
  20. Vazquez-Torres, A. and F. C. Fang. 2001. Oxygen-dependent anti-Salmonella activity of macrophages. Trends Microbiol. 9: 29-33.
  21. Vendeville, A., K. Winzer, K. Heurlier, C. M. Tang, and K. R. Hardie. 2005. Making 'sense' of metabolism: Autoinducer-2, LuxS and pathogenic bacteria. Nat. Rev. Microbiol. 3: 383-396. https://doi.org/10.1038/nrmicro1146
  22. Waters, C. M. and B. L. Bassler. 2005. Quorum sensing: Cellto-cell communication in bacteria. Annu. Rev. Cell Dev. Biol. 21: 319-346. https://doi.org/10.1146/annurev.cellbio.21.012704.131001
  23. Xavier, K. B. and B. L. Bassler. 2003. LuxS quorum sensing: More than just a numbers game. Curr. Opin. Microbiol. 6: 191-197. https://doi.org/10.1016/S1369-5274(03)00028-6
  24. Xavier, K. B., S. T. Miller, W. Lu, J. H. Kim, J. Rabinowitz, I. Pelczer, M. F. Semmelhack, and B. L. Bassler. 2007. Phosphorylation and processing of the quorum-sensing molecule autoinducer-2 in enteric bacteria. ACS Chem. Biol. 2: 128-136. https://doi.org/10.1021/cb600444h

Cited by

  1. Salmonella Typhimurium and Multidirectional Communication in the Gut vol.7, pp.None, 2016, https://doi.org/10.3389/fmicb.2016.01827
  2. CRISPR- cas3 of Salmonella Upregulates Bacterial Biofilm Formation and Virulence to Host Cells by Targeting Quorum-Sensing Systems vol.9, pp.1, 2010, https://doi.org/10.3390/pathogens9010053
  3. Effects of quorum sensing on the biofilm formation and viable but non-culturable state vol.137, pp.None, 2010, https://doi.org/10.1016/j.foodres.2020.109742