DOI QR코드

DOI QR Code

Genetic and Phenotypic Diversity of Plant Growth Promoting Rhizobacteria Isolated from Sugarcane Plants Growing in Pakistan

  • Mehnaz, Samina (Department of Microbiology and Molecular Genetics, Quaid-e-Azam Campus, Punjab University) ;
  • Baig, Deeba N. (School of Biological Science, Quaid-e-Azam Campus, Punjab University) ;
  • Lazarovits, George (Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada)
  • Received : 2010.05.10
  • Accepted : 2010.09.13
  • Published : 2010.12.28

Abstract

Bacteria were isolated from roots of sugarcane varieties grown in the fields of Punjab. They were identified by using API20E/NE bacterial identification kits and from sequences of 16S rRNA and amplicons of the cpn60 gene. The majority of bacteria were found to belong to the genera of Enterobacter, Pseudomonas, and Klebsiella, but members of genera Azospirillum, Rhizobium, Rahnella, Delftia, Caulobacter, Pannonibacter, Xanthomonas, and Stenotrophomonas were also found. The community, however, was dominated by members of the Pseudomonadaceae and Enterobacteriaceae, as representatives of these genera were found in samples from every variety and location examined. All isolates were tested for the presence of five enzymes and seven factors known to be associated with plant growth promotion. Ten isolates showed lipase activity and eight were positive for protease activity. Cellulase, chitinase, and pectinase were not detected in any strain. Nine strains showed nitrogen fixing ability (acetylene reduction assay) and 26 were capable of solubilizing phosphate. In the presence of 100 mg/l tryptophan, all strains except one produced indole acetic acid in the growth medium. All isolates were positive for ACC deaminase activity. Six strains produced homoserine lactones and three produced HCN and hexamate type siderophores. One isolate was capable of inhibiting the growth of 24 pathogenic fungal strains of Colletotrichum, Fusarium, Pythium, and Rhizoctonia spp. In tests of their abilities to grow under a range of temperature, pH, and NaCl concentrations, all isolates grew well on plates with 3% NaCl and most of them grew well at 4 to $41^{\circ}C$ and at pH 11.

Keywords

References

  1. Boddey, R. M., S. Urquiaga, B. J. R. Alves, and V. Reis. 2003. Endophytic nitrogen fixation in sugarcane: Present knowledge and future application. Plant Soil 252: 139-149.
  2. Cavalcante, V. A. and J. Dobereiner. 1988. A new acid tolerant nitrogen fixing bacterium associated with sugarcane. Plant Soil 108: 23-31. https://doi.org/10.1007/BF02370096
  3. Coombs, J. T. and C. M. M. Franco. 2003. Isolation and identification of actinobacteria from surface sterilized wheat roots. Appl. Environ. Microbiol. 69: 5603-5608. https://doi.org/10.1128/AEM.69.9.5603-5608.2003
  4. De Lima, T. C. S., B. M. Grisi, and M. C. M. Bonato. 1999. Bacteria isolated from a sugarcane agroecosystem: Their potential production of polyhydroxyalcanoates and resistance to antibiotics. Rev. Microbiol. 30: 214-224. https://doi.org/10.1590/S0001-37141999000300006
  5. Diggle, S. P., S. A. Crusz, and M. Camara. 2007. Quorum sensing. Curr. Microbiol. 17: 907-910.
  6. Dworkin, M. and J. Foster. 1958. Experiments with some micro-organisms which utilize ethane and hydrogen. J. Bacteriol. 75: 592-601.
  7. Felsenstein, J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39: 783-791. https://doi.org/10.2307/2408678
  8. Glick, B. R., B. Todorovic, J. Czarny, Z. Cheng, J. Duan, and B. McConkey. 2007. Promotion of plant growth by bacterial ACC deaminase. Crit. Rev. Plant Sci. 26: 227-242. https://doi.org/10.1080/07352680701572966
  9. Hill, J. E., A. Paccagnella, K. Law, P. L. Melito, D. L. Woodward, L. Price, et al. 2006. Identification of Campylobacter spp. and discrimination from Helicobacter and Arcobacter spp. by direct sequencing of PCR-amplified cpn60 sequences and comparison to cpnDB, a chaperonin reference sequence database. J. Med. Microbiol. 55: 393-399. https://doi.org/10.1099/jmm.0.46282-0
  10. King, E. O., M. K. Ward, and D. E. Raney. 1954. Two simple media for the demonstration of pyocyanin and fluorescin. J. Lab. Clin. Med. 44: 301-307.
  11. Kumar, K. V., S. Srivastava, N. Singh, and H. M. Behl. 2009. Role of metal resistant plant growth promoting bacteria in ameliorating fly ash to the growth of Brassica juncea. J. Haz. Mat. 170: 51-57. https://doi.org/10.1016/j.jhazmat.2009.04.132
  12. Kumar, R. S., N. Ayyadurai, P. Pandiaraja, A. V. Reddy, Y. Venkatesvarlu, O. Prsakash, and N. Sakthivel. 2005. Characterization of antifungal metabolite produced by a new strain Pseudomonas aeruginosa PUPa3 that exhibits broad spectrum antifungal activity and biofertilizing traits. J. Appl. Microbiol. 98: 145-154. https://doi.org/10.1111/j.1365-2672.2004.02435.x
  13. Loiret, F. G., E. Ortega, D. Kleiner, P. Ortega-Rodes, R. Rodes, and Z. Dong. 2004. A putative new endophytic nitrogen-fixing bacterium Pantoea sp. from sugarcane. J. Appl. Microbiol. 97: 504-511. https://doi.org/10.1111/j.1365-2672.2004.02329.x
  14. MacFadden, J. F. 1980. Biochemical Tests for Identification of Medical Bacteria. Williams and Wilkins, Baltimore.
  15. Mehnaz, S. and G. Lazarovits. 2006. Inoculation effects of Pseudomonas putida, Gluconaacetobacter azotocaptans and Azospirillum lipoferum on corn plant growth under green house conditions. Microb. Ecol. 51: 326-335. https://doi.org/10.1007/s00248-006-9039-7
  16. Mehnaz, S., D. N. Baig, F. Jamil, B. Weselowski, and G. Lazarovits. 2009. Characterization of a phenazine and hexanoyl homoserine lactone producing Pseudomonas aurantiaca strain PB-St2, isolated from sugarcane stem. J. Microbiol. Biotechnol. 19: 1688-1694.
  17. Mehnaz, S., B. Weselowski, F. A. Mufti, S. Zahid, G. Lazarovits, and J. Iqbal. 2009. Isolation, characterization and effect of fluorescent pseudomonads on micropropagated sugarcane. Can. J. Microbiol. 55: 1007-1011. https://doi.org/10.1139/W09-050
  18. Mehnaz, S., M. S. Mirza, J. Haurat, R. Bally, P. Normand, A. Bano, and K. A. Malik. 2001. Isolation and 16S rRNA sequence analysis of beneficial bacteria from the rhizosphere of rice. Can. J. Microbiol. 47: 110-117. https://doi.org/10.1139/w00-132
  19. Miller, R. L. and V. J. Higgins. 1970. Association of cyanide with infection of birdsfoot trefoil by Stemphylium loti. Phytopathology 60: 104-110. https://doi.org/10.1094/Phyto-60-104
  20. Mirza, M. S., W. Ahmed, F. Latif, J. Haurat, R. Bally, P. Normand, and K. A. Malik. 2001. Isolation, partial characterization and the effect of plant growth promoting bacteria on micropropagated sugarcane in vitro. Plant Soil 237: 47-54. https://doi.org/10.1023/A:1013388619231
  21. Nautiyal, C. S. 1999. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol. Lett. 170: 265-270. https://doi.org/10.1111/j.1574-6968.1999.tb13383.x
  22. Oak, A. 1992. A re-evaluation of nitrogen assimilation in roots. Bioscience 42: 103-111. https://doi.org/10.2307/1311651
  23. Olivares, F. L., V. L. D. Baldani, V. M. Reis, J. I. Baldani, and J. Dobereiner. 1996. Occurrence of the endophytic diazaotrophs Herbaspirillum spp. in roots, stems and leaves predominantly of Gramineae. Biol. Fertil. Soils 2: 197-200.
  24. Park, M., C. Kim, J. Yang, H. Lee, W. Shin, S. Kim, and T. Sa. 2005. Isolation and characterization of diazotrophic growth promoting bacteria from rhizosphere of agricultural crops of Korea. Microb. Res. 160: 127-133. https://doi.org/10.1016/j.micres.2004.10.003
  25. Penrose, D. M. and B. R. Glick. 2003. Methods for isolating and characterizing ACC deaminase containing plant growth promoting rhizobacteria. Physiol. Plant 118: 10-15. https://doi.org/10.1034/j.1399-3054.2003.00086.x
  26. Penrose, D. M., B. A. Moffat, and B. R. Glick. 2001. Determination of 1-aminocyclopropane-1-carboxylic acid (ACC) to assess the effects of ACC deaminase-containing bacteria on roots of canola seedlings. Can. J. Microbiol. 47: 77-80. https://doi.org/10.1139/w00-128
  27. Perez-Miranda, S., N. Cabirol, R. George-Tellez, L. S. Zamudio-Rivera, and F. J. Fernandez. 2007. O-CAS, a fast and universal method for siderophore detection. J. Microbiol. Methods 70: 127-131. https://doi.org/10.1016/j.mimet.2007.03.023
  28. Rashid, N., Y. Shimada, S. Ezaki, H. A. Tomi, and T. Y. Imanaka. 2001. Low temperature lipase from psychrotrophic Pseudomonas sp. strain KB700A. Appl. Environ. Microbiol. 67: 4064-4069. https://doi.org/10.1128/AEM.67.9.4064-4069.2001
  29. Renni, R J. 1981. A single medium for the isolation of nitrogen fixing bacteria. Can. J. Microbiol. 27: 8-14. https://doi.org/10.1139/m81-002
  30. Rosado, A. S., F. S. de Azevedo, D. W. da Cruz, J. D. Van Elsa, and L. Seldin. 1998. Phenotypic and genetic diversity of Penibacillus azotofixans strains isolated from the rhizoplane soil of different grasses. J. Appl. Microbiol. 84: 216-226. https://doi.org/10.1046/j.1365-2672.1998.00332.x
  31. Saitou, N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
  32. Saleem, M., M. Arshad, S. Hussain, and A. S. Bhatti. 2007. Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J. Ind. Microbiol. Biotechnol. 34: 635-648. https://doi.org/10.1007/s10295-007-0240-6
  33. Saravanakumar, D. and R. Samiyappan. 2007. ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis hypogea) plants. J. Appl. Microbiol. 102: 1283-1292. https://doi.org/10.1111/j.1365-2672.2006.03179.x
  34. Sarwar, G., H. Schmeisky, N. Hussain, S. Muhammad, M. Ibrahim, and E. Safdar. 2008. Improvement of soil physical and chemical properties with compost application in rice-wheat cropping system. Pak. J. Bot. 40: 275-282.
  35. Schwyn, B. and J. B. Neilands. 1987. Universal chemical assay for the detection and determination of siderophores. Anals Biochem. 160: 46-56.
  36. Sierra, G. 1957. A simple method for the detection of lipolytic activity of micro-organisms and some observations on the influence of the contact between cells and fatty acid substrates. Antonie van Leeuvenhoek 23: 15-22. https://doi.org/10.1007/BF02545855
  37. Tamura, K., M. Nei, and S. Kumar. 2004. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc. Natl. Acad. Sci. USA. 101: 11030-11035. https://doi.org/10.1073/pnas.0404206101
  38. Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599. https://doi.org/10.1093/molbev/msm092
  39. Tien, T. M., M. H. Gaskins, and D. H. Hubbel. 1979. Plant growth substances produced by Azospirillum brasilense and their effect on the growth of Pearl Millet (Pennisetum americanum L.). Appl. Environ. Microbiol. 37: 1016-1027.
  40. Xie, C. H. and A. Yokota. 2005. Azospirillum oryzae sp. nov., a nitrogen-fixing bacterium isolated from the roots of the rice plant Oryza sativa. Int. J. Syst. Evol. Bacteriol. 55: 1435-1438.

Cited by

  1. Plant Growth-Promoting Nitrogen-Fixing Enterobacteria Are in Association with Sugarcane Plants Growing in Guangxi, China vol.27, pp.4, 2010, https://doi.org/10.1264/jsme2.me11275
  2. Coleoptera and microbe biomass in Antarctic Dry Valley paleosols adjacent to the Inland Ice: Implications for Mars vol.60, pp.1, 2012, https://doi.org/10.1016/j.pss.2011.11.008
  3. Biodiversity characterization of cellulolytic bacteria present on native Chaco soil by comparison of ribosomal RNA genes vol.163, pp.3, 2010, https://doi.org/10.1016/j.resmic.2011.12.001
  4. Screening of plant growth promoting Rhizobacteria isolated from sunflower (Helianthus annuus L.) vol.356, pp.1, 2012, https://doi.org/10.1007/s11104-011-1079-1
  5. Enterobacter sacchari sp. nov., a nitrogen-fixing bacterium associated with sugar cane (Saccharum officinarum L.) vol.63, pp.7, 2010, https://doi.org/10.1099/ijs.0.045500-0
  6. Plant Growth-Promoting Traits in Enterobacter cloacae subsp. dissolvens MDSR9 Isolated from Soybean Rhizosphere and its Impact on Growth and Nutrition of Soybean and Wheat Upon Inoculation vol.3, pp.1, 2010, https://doi.org/10.1007/s40003-014-0100-3
  7. Isolation, characterization, and formulation of antagonistic bacteria for the management of seedlings damping-off and root rot disease of cucumber vol.60, pp.1, 2010, https://doi.org/10.1139/cjm-2013-0675
  8. Complete Genome Sequence of the Sugar Cane Endophyte Pseudomonas aurantiaca PB-St2, a Disease-Suppressive Bacterium with Antifungal Activity toward the Plant Pathogen Colletotrichum falcatum vol.2, pp.1, 2010, https://doi.org/10.1128/genomea.01108-13
  9. Endophytic nitrogen-fixing Klebsiella variicola strain DX120E promotes sugarcane growth vol.50, pp.4, 2010, https://doi.org/10.1007/s00374-013-0878-3
  10. Growth stimulation and management of diseases of ornamental plants using phosphate solubilizing microorganisms: current perspective vol.38, pp.5, 2016, https://doi.org/10.1007/s11738-016-2133-7
  11. A Complex Inoculant of N 2 -Fixing, P- and K-Solubilizing Bacteria from a Purple Soil Improves the Growth of Kiwifruit ( Actinidia chinensis ) Plantlets vol.7, pp.None, 2016, https://doi.org/10.3389/fmicb.2016.00841
  12. Screening of Rhizospheric Actinomycetes for Various In-vitro and In-vivo Plant Growth Promoting (PGP) Traits and for Agroactive Compounds vol.7, pp.None, 2016, https://doi.org/10.3389/fmicb.2016.01334
  13. Effect of Different Lignocellulosic Diets on Bacterial Microbiota and Hydrolytic Enzyme Activities in the Gut of the Cotton Boll Weevil ( Anthonomus grandis ) vol.7, pp.None, 2016, https://doi.org/10.3389/fmicb.2016.02093
  14. Cultivable Nitrogen Fixing Bacteria from Extremely Alkaline-Saline Soils vol.6, pp.6, 2010, https://doi.org/10.4236/aim.2016.66041
  15. The Systematic Investigation of the Quorum Sensing System of the Biocontrol Strain Pseudomonas chlororaphis subsp. aurantiaca PB-St2 Unveils aurI to Be a Biosynthetic Origin for 3-Oxo-Homoserine vol.11, pp.11, 2016, https://doi.org/10.1371/journal.pone.0167002
  16. A Culture-Independent Approach to Enrich Endophytic Bacterial Cells from Sugarcane Stems for Community Characterization vol.74, pp.2, 2010, https://doi.org/10.1007/s00248-017-0941-y
  17. Intercropping in Sugarcane Cultivation Influenced the Soil Properties and Enhanced the Diversity of Vital Diazotrophic Bacteria vol.19, pp.2, 2017, https://doi.org/10.1007/s12355-016-0445-y
  18. Genetic Diversity of Nitrogen-Fixing and Plant Growth Promoting Pseudomonas Species Isolated from Sugarcane Rhizosphere vol.8, pp.None, 2010, https://doi.org/10.3389/fmicb.2017.01268
  19. Contribution of Zinc Solubilizing Bacteria in Growth Promotion and Zinc Content of Wheat vol.8, pp.None, 2017, https://doi.org/10.3389/fmicb.2017.02593
  20. Mechanistic insights on plant root colonization by bacterial endophytes: a symbiotic relationship for sustainable agriculture vol.1, pp.1, 2010, https://doi.org/10.1007/s42398-018-0011-5
  21. Bacterial Microbiota of Rice Roots: 16S-Based Taxonomic Profiling of Endophytic and Rhizospheric Diversity, Endophytes Isolation and Simplified Endophytic Community vol.6, pp.1, 2010, https://doi.org/10.3390/microorganisms6010014
  22. Exploitation of new endophytic bacteria and their ability to promote sugarcane growth and nitrogen nutrition vol.112, pp.2, 2010, https://doi.org/10.1007/s10482-018-1157-y
  23. Microbiome of Halophytes: Diversity and Importance for Plant Health and Productivity vol.47, pp.1, 2019, https://doi.org/10.4014/mbl.1804.04021
  24. Rhizospheric and endospheric diazotrophs mediated soil fertility intensification in sugarcane-legume intercropping systems vol.19, pp.4, 2010, https://doi.org/10.1007/s11368-018-2156-3
  25. The role of potassium solubilizing bacteria (KSB) inoculations on grain yield, dry matter remobilization and translocation in rice (Oryza sativa L.) vol.42, pp.10, 2010, https://doi.org/10.1080/01904167.2019.1609511
  26. Microbial diversity in the rhizosphere of plants growing under extreme environments and its impact on crop improvement vol.2, pp.3, 2010, https://doi.org/10.1007/s42398-019-00061-5
  27. Impact of Soil Salinity on the Cowpea Nodule-Microbiome and the Isolation of Halotolerant PGPR Strains to Promote Plant Growth under Salinity Stress vol.4, pp.4, 2010, https://doi.org/10.1094/pbiomes-09-19-0057-r
  28. Full Issue PDF vol.4, pp.4, 2020, https://doi.org/10.1094/pbiomes-4-4
  29. Plant-PGPR interaction study of plant growth-promoting diazotrophs Kosakonia radicincitans BA1 and Stenotrophomonas maltophilia COA2 to enhance growth and stress-related gene expression in Saccharum s vol.15, pp.1, 2010, https://doi.org/10.1080/17429145.2020.1857857
  30. Phylogenetic analysis of halophyte‐associated rhizobacteria and effect of halotolerant and halophilic phosphate‐solubilizing biofertilizers on maize growth under salinity stress conditions vol.128, pp.2, 2010, https://doi.org/10.1111/jam.14497
  31. Control of pyrimidine nucleotide formation in Pseudomonas aurantiaca vol.202, pp.6, 2010, https://doi.org/10.1007/s00203-020-01842-x
  32. Whole Genome Analysis of Sugarcane Root-Associated Endophyte Pseudomonas aeruginosa B18-A Plant Growth-Promoting Bacterium With Antagonistic Potential Against Sporisorium scitamineum vol.12, pp.None, 2010, https://doi.org/10.3389/fmicb.2021.628376
  33. Diazotrophic Bacteria Pantoea dispersa and Enterobacter asburiae Promote Sugarcane Growth by Inducing Nitrogen Uptake and Defense-Related Gene Expression vol.11, pp.None, 2010, https://doi.org/10.3389/fmicb.2020.600417
  34. Genomic characterization and computational phenotyping of nitrogen-fixing bacteria isolated from Colombian sugarcane fields vol.11, pp.1, 2010, https://doi.org/10.1038/s41598-021-88380-8
  35. A comprehensive synthesis unveils the mysteries of phosphate‐solubilizing microbes vol.96, pp.6, 2010, https://doi.org/10.1111/brv.12779
  36. Identification, characterization and optimization of phosphate solubilizing rhizobacteria (PSRB) from rice rhizosphere vol.29, pp.1, 2010, https://doi.org/10.1016/j.sjbs.2021.09.075