DOI QR코드

DOI QR Code

Characterization of Two Urease-Producing and Calcifying Bacillus spp. Isolated from Cement

  • Achal, Varenyam (Department of Biotechnology, Thapar University) ;
  • Mukherjee, Abhijit (Department of Biotechnology, Thapar University) ;
  • Reddy, M. Sudhakara (Department of Biotechnology, Thapar University)
  • Received : 2010.06.23
  • Accepted : 2010.08.11
  • Published : 2010.11.28

Abstract

Two bacterial strains designated as CT2 and CT5 were isolated from highly alkaline cement samples using the enrichment culture technique. On the basis of various physiological tests and 16S rRNA sequence analysis, the bacteria were identified as Bacillus species. The urease production was 575.87 U/ml and 670.71 U/ml for CT2 and CT5, respectively. Calcite constituted 27.6% and 31% of the total weight of sand samples plugged by CT2 and CT5, respectively. Scanning electron micrography analysis revealed the direct involvement of these isolates in calcite precipitation. This is the first report of the isolation and identification of Bacillus species from cement. Based on the ability of these bacteria to tolerate the extreme environment of cement, they have potential to be used in remediating the cracks and fissures in various building or concrete structures.

Keywords

References

  1. Achal, V., A. Mukherjee, and M. S. Reddy. 2010. Biocalcification by Sporosarcina pasteurii using corn steep liquor as nutrient source. Industr. Biotechnol. 6: 170-174. https://doi.org/10.1089/ind.2010.6.170
  2. Achal, V., A. Mukherjee, and M. S. Reddy. 2010. Microbial concrete: A way to enhance the durability of building structures. J. Mater. Civil Eng. DOI: 10.1061/(ASCE)MT.1943-5533.0000159
  3. Achal, V., A. Mukherjee, P. C. Basu, and M. S. Reddy. 2009. Lactose mother liquor as an alternative nutrient source for microbial concrete production by Sporosarcina pasteurii. J. Ind. Microbiol. Biotechnol. 36: 433-438. https://doi.org/10.1007/s10295-008-0514-7
  4. Achal, V., A. Mukherjee, P. C. Basu, and M. S. Reddy. 2009. Strain improvement of Sporosarcina pasteurii for enhanced urease and calcite production. J. Ind. Microbiol. Biotechnol. 36: 981-988. https://doi.org/10.1007/s10295-009-0578-z
  5. Altschul, S. F., T. L. Madden, A. A. Schaffer, S. Zhang, Z. Zhang, W. Miller, and D. J. Lipman. 1997. Gapped BLAST: A new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402. https://doi.org/10.1093/nar/25.17.3389
  6. Aono, R., M. Ito, and T. Machida. 1999. Contribution of cell wall component teichuronopeptide to pH homeostasis and alkaliphily in the alkaliphile Bacillus lentus C-125. J. Bacteriol. 181: 6600-6606.
  7. APHA. 1989. Standard Methods for the Examination of Water and Wastewater, 17th Ed. American Public Health Association, Washington.
  8. Bachmeier, K. L., A. E. Williams, J. R. Warmington, and S. S. Bang. 2002. Urease activity in microbiologically induced calcite precipitation. J. Biotechnol. 93: 171-181. https://doi.org/10.1016/S0168-1656(01)00393-5
  9. Bang, S. S. and V. Ramakrishnan. 2001. Microbiologically enhanced crack remediation (MECR), pp. 3-13. Proceedings of the International Symposium on Industrial Application of Microbial Genomes, Daegu, Korea.
  10. Bang, S. S., J. K. Galinat, and V. Ramakrishnan. 2001. Calcite precipitation induced by polyurethane-immobilized Bacillus pasteurii. Enz. Microb. Technol. 28: 404-409. https://doi.org/10.1016/S0141-0229(00)00348-3
  11. Boquet, E., A. Boronat, and A. Ramos-Cormenzana. 1973. Production of calcite (calcium carbonate) crystals by soil bacteria is a general phenomenon. Nature 246: 527-529. https://doi.org/10.1038/246527a0
  12. Burne, R. A. and R. E. Chen. 2001. Bacterial ureases in infectious diseases. Microbes Infect. 2: 533-542.
  13. Burne, R. A. and R. E. Marquis. 2000. Alkali production by oral bacteria and protection against dental caries. FEMS Microbiol. Lett. 193: 1-6. https://doi.org/10.1111/j.1574-6968.2000.tb09393.x
  14. Chafetz, H. S. and R. L. Folk. 1984. Travertines: Depositional morphology and the bacterially constructed constituents. J. Sed. Petrol. 54: 289-316.
  15. Cole, J. R., B. Chai, T. L. Marsh, R. J. Farris, Q. Wang, S. A. Kulam, et al. 2003. The ribosomal database project (RDP-II): Previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Res. 31: 442- 443. https://doi.org/10.1093/nar/gkg039
  16. Friedman, L. E., B. N. de Passerini Rossi, M. T. Messina, and M. A. Franco. 2001. Phenotype evaluation of Bordetella bronchiseptica cultures by urease activity and Congo red affinity. Lett. Appl. Microbiol. 33: 285-290. https://doi.org/10.1046/j.1472-765X.2001.00997.x
  17. Fukumoto, J., T. Yamamoto, and D. Tsuru. 1971. Process for producing detergent resisting alkaline protease. Canadian Patent 910: 214.
  18. Gollapudi, U. K., C. L. Knutson, S. S. Bang, and M. R. Islam. 1995. A new method for controlling leaching through permeable channels. Chemosphere 30: 695-705. https://doi.org/10.1016/0045-6535(94)00435-W
  19. Gordon, R. E., W. C. Haynes, and C. H. Pang. 1973. The Genus Bacillus, pp. 427. US Department of Agriculture Handbook, Washington.
  20. Kantzas, A., F. G. Ferris, L. Stehmeier, D. F. Marentette, K. N. Jha, and F. M. Mourits. 1992. A novel method of sand consolidation through bacteriogenic mineral plugging (CIM 92- 46), pp. 1-15. Proceedings of the CIM Annual Technical Conference, Vol. 2. Petroleum Society of CIM, Calgary, Canada.
  21. Kawaguchi, T. and A. W. Decho. 2002. A laboratory investigation of cyanobacterial extracellular polymeric secretions (EPS) in influencing $CaCO_{3}$ polymorphism. J. Cryst. Growth 240: 230-235. https://doi.org/10.1016/S0022-0248(02)00918-1
  22. Krishna, P., A. Arora, and M. S. Reddy. 2008. An alkaliphilic and xylanolytic strain of actinomycetes, Kocuria sp. RM1, isolated from extremely alkaline bauxite residue sites. World J. Microbiol. Biotechnol. 24: 3079-3085. https://doi.org/10.1007/s11274-008-9801-8
  23. Krulwich, T. A. and A. A. Guffanti. 1989. Alkalophilic bacteria. Annu. Rev. Microbiol. 43: 435-463. https://doi.org/10.1146/annurev.mi.43.100189.002251
  24. McConnaughey, T. A. and F. F. Whelan. 1997. Calcification generates protons for nutrient and bicarbonate uptake. Earth Sci. Rev. 42: 95-117. https://doi.org/10.1016/S0012-8252(96)00036-0
  25. Mobley, H. L. T. and R. P. Hausinger. 1989. Microbial ureases: Significance, regulation and molecular characterisation. Microbiol. Rev. 53: 85-108.
  26. Morita, R. Y. 1980. Calcite precipitation by marine bacteria. Geomicrobiol. J. 2: 63-82. https://doi.org/10.1080/01490458009377751
  27. Natarajan, K. R. 1995. Kinetic study of the enzyme urease from Dolichos biflorus. J. Chem. Educ. 72: 556-557. https://doi.org/10.1021/ed072p556
  28. Ramachandran, S. K., V. Ramakrishnan, and S. S. Bang. 2001. Remediation of concrete using microorganisms. Am. Con. Inst. Mat. J. 98: 3-9.
  29. Rivadeneyra, M. A., R. Delgado, A. Moral, M. R. Ferrer, and A. Ramos-Cormenzana. 1994. Precipitation of calcium carbonate by Vibrio spp. from an inland saltern. FEMS Microbiol. Ecol. 13: 197-204. https://doi.org/10.1111/j.1574-6941.1994.tb00066.x
  30. Rivadeneyra, M. A., R. Delgado, G. Delgado, A. Moral, M. R. Ferrer, and A. Ramos-Cormenzana. 1993. Precipitation of carbonate by Bacillus sp. isolated from saline soils. Geomicrobiol. J. 11: 175-184. https://doi.org/10.1080/01490459309377949
  31. Sharma, A., A. Pandey, Y. S. Shouche, B. Kumar, and G. Kulkarni. 2009. Characterization and identification of Geobacillus spp. isolated from Soldhar hot spring site of Garhwal Himalaya, India. J. Basic Microbiol. 49: 187-194. https://doi.org/10.1002/jobm.200800194
  32. Smith, N. R., R. E. Gordon, and F. E. Clark. 1952. Aerobic Spore Forming Bacteria, pp. 16. US Department of Agriculture Monograph, Washington.
  33. Stocks-Fischer, S., J. K. Galinat, and S. S. Bang. 1999. Microbiological precipitation of $CaCO_{3}$. Soil Biol. Biochem. 31: 1563-1571. https://doi.org/10.1016/S0038-0717(99)00082-6
  34. Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599. https://doi.org/10.1093/molbev/msm092
  35. Tiano, P., L. Biagiotti, and G. Mastromei. 1999. Bacterial biomediated calcite precipitation for monumental stones conservation: Methods of evaluation. J. Microbiol. Methods 36: 138-145.
  36. Tsuneda, S., J. Jung, H. Hayashi, H. Aikawa, A. Hirata, and H. Sasaki. 2003. Influence of extracellular polymers on electrokinetic properties of heterotrophic bacterial cells examined by soft particle electrophoresis theory. Colloid Surface B 29: 181-188. https://doi.org/10.1016/S0927-7765(02)00188-1

Cited by

  1. Selective enrichment and production of highly urease active bacteria by non-sterile (open) chemostat culture vol.40, pp.10, 2013, https://doi.org/10.1007/s10295-013-1310-6
  2. Biocement, recent research in construction engineering: status of China against rest of world vol.26, pp.5, 2010, https://doi.org/10.1680/adcr.13.00044
  3. Screening for Urease-Producing Bacteria from Limestone Caves of Sarawak vol.6, pp.1, 2016, https://doi.org/10.33736/bjrst.213.2016
  4. A Laboratory Investigation on the Production of Sustainable Bacteria-Blended Fly Ash Concrete vol.42, pp.3, 2017, https://doi.org/10.1007/s13369-016-2285-1
  5. Microbial Extracellular Polymeric Substances (EPSs) in Ocean Systems vol.8, pp.None, 2010, https://doi.org/10.3389/fmicb.2017.00922
  6. Improving the strength of sandy soils via ureolytic CaCO3 solidification by Sporosarcina ureae vol.15, pp.14, 2010, https://doi.org/10.5194/bg-15-4367-2018
  7. Bacterial based admixed or spray treatment to improve properties of concrete vol.44, pp.1, 2010, https://doi.org/10.1007/s12046-018-0999-3
  8. A Novel Approach to Enhance the Urease Activity of Sporosarcina pasteurii and its Application on Microbial-Induced Calcium Carbonate Precipitation for Sand vol.36, pp.9, 2010, https://doi.org/10.1080/01490451.2019.1631911
  9. Bacterial Concrete as a Sustainable Building Material? vol.12, pp.2, 2010, https://doi.org/10.3390/su12020696
  10. A review on remediation technologies for nickel-contaminated soil vol.26, pp.3, 2020, https://doi.org/10.1080/10807039.2018.1539639
  11. Isolation and Identification of Local Bactria Produced from Soil-Borne Urease vol.901, pp.None, 2010, https://doi.org/10.1088/1757-899x/901/1/012035
  12. Evaluation of Biostimulation Efficacy on the Reinforcement of Calcareous Sand vol.49, pp.6, 2010, https://doi.org/10.1520/jte20200495
  13. Zero liquid discharge treatment of brackish water by membrane distillation system: Influencing mechanism of antiscalants on scaling mitigation and biofilm formation vol.282, pp.no.pb, 2010, https://doi.org/10.1016/j.seppur.2021.120157