DOI QR코드

DOI QR Code

Construction of Amylolytic Industrial Brewing Yeast Strain with High Glutathione Content for Manufacturing Beer with Improved Anti-Staling Capability and Flavor

  • Wang, Jin-Jing (The Laboratory of Molecular Genetics and Breeding of Yeasts, Institute of Microbiology, Chinese Academy of Sciences) ;
  • Wang, Zhao-Yue (The Laboratory of Molecular Genetics and Breeding of Yeasts, Institute of Microbiology, Chinese Academy of Sciences) ;
  • He, Xiu-Ping (The Laboratory of Molecular Genetics and Breeding of Yeasts, Institute of Microbiology, Chinese Academy of Sciences) ;
  • Zhang, Bo-Run (The Laboratory of Molecular Genetics and Breeding of Yeasts, Institute of Microbiology, Chinese Academy of Sciences)
  • Received : 2010.04.03
  • Accepted : 2010.07.14
  • Published : 2010.11.28

Abstract

In beer, glutathione works as the main antioxidant compound, which also correlates with the stability of the beer flavor. In addition, high residual sugars in beer contribute to major nonvolatile components, which are reflected in a high caloric content. Therefore, in this study, the Saccharomyces cerevisiae GSH1 gene encoding glutamylcysteine synthetase and the Saccharomycopsis fibuligera ALP1 gene encoding ${\alpha}$-amylase were coexpressed in industrial brewing yeast strain Y31 targeting the ${\alpha}$-acetolactate synthase (AHAS) gene (ILV2) and alcohol dehydrogenase gene (ADH2), resulting in the new recombinant strain TY3. The glutathione content in the fermentation broth of TY3 increased to 43.83 mg/l as compared with 33.34 mg/l in the fermentation broth of Y31. The recombinant strain showed a high ${\alpha}$-amylase activity and utilized more than 46% of the starch as the sole carbon source after 5 days. European Brewery Convention tube fermentation tests comparing the fermentation broths of TY3 and Y31 showed that the flavor stability index for TY3 was 1.3-fold higher, whereas its residual sugar concentration was 76.8% lower. Owing to the interruption of the ILV2 gene and ADH2 gene, the contents of diacetyl and acetaldehyde as off-flavor compounds were reduced by 56.93% and 31.25%, respectively, when compared with the contents in the Y31 fermentation broth. In addition, since no drug-resistant genes were introduced to the new recombinant strain, it should be more suitable for use in the beer industry, owing to its better flavor stability and other beneficial characteristics.

Keywords

References

  1. Adamis, P. D. B., A. D. Panek, S. G. F. Leite, and E. C. A. Eleutherio. 2003. Factors involved with cadmium absorption by a wild-type strain of Saccharomyces cerevisiae. Braz. J. Microbiol 34: 55-60.
  2. Back, W., O. Franz, and T. Nakamura. 2001. Das antioxidative potenzial von Bier. Brauwelt 141: 209-215.
  3. Baur, X., Z. Chen, and I. Sander. 1994. Isolation and denomination of an important allergen in baking additives: $\alpha$-Amylase from Aspergillus orizae (Asp O II). Clin. Exp. Allergy 24: 1465-1470.
  4. Bergmeyer, H. V., K. Gacoehm, and M. Grassl. 1974. In H. V. Bergmeyer (ed.). Methods of Enzymatic Analysis, Vol. 2, pp. 428-429. Academic Press, NY.
  5. Blandino, A., I. Caro, and D. Cantero. 1997. Comparative study of alcohol dehydrogenase activity of flor yeast extracts. Biotech. Lett. 19: 651-654. https://doi.org/10.1023/A:1018386731116
  6. Cai, Y., Q. Mu, Z. Y. Wang, B. R. Zhang, and B. J. Yan. 2008. Construction of self-cloning industrial brewing yeast with highglutathione production and low ADH II enzyme activity. Microbiolgy 35: 1171-1175 [In Chinese]
  7. Douglas, K. T. 1987. Mechanisms of action of glutathionedependent enzymes, pp. 103-167. In A. Meister (ed.). Advances in Enzymology. John Wiley & Sons, NY.
  8. Eksteen, J. M., P. van Rensburg, R. R. C. Otero, and I. S. Pretorius. 2003. Starch fermentation by recombinant Saccharomyces cerevisiae strains expressing the $\alpha$-amylase and glucoamylase genes from Lipomyces kononenkoae and Saccharomycopsis fibuligera. Biotechnol. Bioeng. 84: 639-646. https://doi.org/10.1002/bit.10797
  9. Fan, X., X. He, X. Guo, N. Qu, Ch. Wang, and B. Zhang. 2004. Increasing glutathione formation by functional expression of $\gamma$- glutamylcysteine synthetase gene in Saccharomyces cerevisiae. Biotech. Lett. 26: 415-417.
  10. Gange, M. A., F. Pinãga, S. Valleâs, D. Ramoân, and A. Querol. 1999. Aroma improving in microvinification processes by the use of a recombinant wine yeast strain expressing the Aspergillus nidulans xlnA gene. Int. J. Food Microbiol. 47: 171-178. https://doi.org/10.1016/S0168-1605(98)00202-5
  11. Jiang, K., Q. Li, and G. X. Gu. 2007. Improvement of beer antistaling capability by genetically modifying industrial brewing yeast with high glutathione content. Chinese J. Biotechnol. 23: 1071-1076. [In Chinese] https://doi.org/10.1016/S1872-2075(07)60065-X
  12. Kang, N. Y., J. N. Park, J. E. Chin, H. B. Lee, S. Y. Im, and S. Bai. 2003. Construction of an amylolytic industrial strain of Saccharomyces cerevisiae containing the Schwanniomyces occidentalis $\alpha$-amylase gene. Biotech. Lett. 25: 1847-1851. https://doi.org/10.1023/A:1026281627466
  13. Landaud, S., P. Lieben, and D. Picque. 1998. Quantitative analysis of diacetyl, pentanedione and their precursors during beer fermentation by an accurate GC/MS method. J. Inst. Brew. 104: 93-99. https://doi.org/10.1002/j.2050-0416.1998.tb00981.x
  14. Li, H., C. X. Song, Y. Y. Wu, and W. J. Zhang. 2005. Correlation studies of beer resistant indexes and beer staling value. Liquormaking SciTechnol. 1: 57-60. [In Chinese]
  15. Liu, X. F., Z. Y. Wang, J. J. Wang, Y. Lu, X. P. He, and B. R. Zhang. 2009. Expression of GAI gene and disruption of PEP4 gene in an industrial brewer's yeast strain. Lett. Appl. Microbiol. 49: 117-123. https://doi.org/10.1111/j.1472-765X.2009.02627.x
  16. Liu, Z. R., G. Y. Zhang, Z. F. Long, and S. G. Liu. 2005. Heterologous expression of amylase gene from Saccharomycopsis fibuligera in an industrial strain of Saccharomyces Cerevisiae. Wuhan Univ. J. Nat. Sci. 10: 1041-1046. https://doi.org/10.1007/BF02832464
  17. McTigue, K. M., R. Harris, and B. Hemphill. 2003. Screening and interventions for obesity in adults: Summary of the evidence for the U.S. Preventive Services Task Force. Ann. Int. Med. 139: 933-949. https://doi.org/10.7326/0003-4819-139-11-200312020-00013
  18. Miller, J. L., W. E. Glennon, and A. L. Burton. 1960. Measurement of carboxymethylcellulase activity. Anal. Biochem. 2: 127-132.
  19. Nieto, A., J. A. Prieto, and P. Sanz. 1999. Stable high-copy number integration of Aspergillus orizae $\alpha$-amylase cDNA in an industrial baker's yeast strain. Biotech. Progr. 15: 459-466. https://doi.org/10.1021/bp9900256
  20. Nogueira, F. N., D. N. Souza, and J. Nicolau. 2000. In vitro approach to evaluate potential harmful effects of beer on health. J. Dent. Res. 28: 271-276. https://doi.org/10.1016/S0300-5712(99)00072-X
  21. Parsons, R. and R. Cope. 1983. The assessment and prediction of beer flavor stability. Proceedings of the Congress of the European Brewery Convention. Information Press, Oxford
  22. Penninckx, M. J. 2002. An overview on glutathione in Saccharomyces versus non-conventional yeasts. FEMS Yeast Res. 2: 295-305.
  23. Pézer-Gonzalez, J. A., R. Gonzalez, A. Querol, J. Sendra, and D. Ramoón. 1993. Construction of a recombinant wine yeast strain expression $\beta$-(1,4)-endoglucanase and its use in microvinification processes. Appl. Environ. Microbiol. 59: 2801- 2806.
  24. Schiestl, R. H. and R. D. Gietz. 1989. High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Curr. Genet. 16: 339-346. https://doi.org/10.1007/BF00340712
  25. Sun, J. S., W. J. Zhang, F. C. Jia , Y. Yang, Z. P. Lin, J. Z. Feng, P. Martin, and D. L. Wang. 2006. Disruption of brewer's yeast alcohol dehydrogenase II gene and reduction of acetaldehyde content during brewery fermentation. J. Am. Soc. Brew. Chem. 64: 195-201.
  26. Van Rensburg, P., M. L. A. Strauss, M. G. Lambrechts, R. R. C. Otero, and I. S. Pretorius. 2007. The heterologous expression of polysaccharidase-encoding genes with oenological relevance in Saccharomyces cerevisiae. J. Appl. Microbiol. 103: 2248-2257. https://doi.org/10.1111/j.1365-2672.2007.03474.x
  27. Vilanova, M., P. Blanco, S. Cortez, M. Castro, T. G. Villal, and C. Sieiro. 2000. Use of PGU1 recombinant Saccharomyces cerevisiae strain in oenological fermentation. J. Appl. Microbiol. 89: 876-883. https://doi.org/10.1046/j.1365-2672.2000.01197.x
  28. Wang, J. J., Z. Y. Wang, X. F. Liu, X. N. Guo, X. P. He, P. C. Wensel, and B. R. Zhang. 2010. Construction of an industrial brewing yeast strain to manufacture beer with low caloric content and improved flavor. J. Microbiol. Biotechnol. doi: 10.4014/jmb.0910.10013
  29. Wang, Z. Y., X. P. He, W. H. Li, N. Liu, and B. R. Zhang. 2008. Construction of self-cloning brewing yeast with highglutathione and low-diacetyl production. Int. J. Food Sci. Tech. 43: 989-994. https://doi.org/10.1111/j.1365-2621.2007.01546.x
  30. Wang, Z. Y., X. P. He, and B. R. Zhang. 2007. Over-expression of GSH1 gene and disruption of PEP4 gene in self-cloning industrial brewer's yeast. Int. J. Food Microbiol. 119: 192-199. https://doi.org/10.1016/j.ijfoodmicro.2007.07.015
  31. Wang, Z. Y., J. J. Wang, X. F. Liu, X. P. He, and B. R. Zhang. 2009. Recombinant industrial brewing yeast strains with ADH2 interruption using self-cloning GSH1+CUP1 cassette. FEMS Yeast Res. 9: 574-581. https://doi.org/10.1111/j.1567-1364.2009.00502.x
  32. Yan, M., Q. Li, and G. X. Gu. 2005. The estimation of endogenesis antioxidative activity of beer by DPPH radical scavenging capacity. Sci. Technol. Food Ind. 26: 82-83, 87. [In Chinese]
  33. Zhang, J. N., X. P. He, X. N. Guo, N. Liu, and B. R. Zhang. 2005. Genetically modified industrial brewing yeast with highglutathione and low-diacetyl production. Chinese J. Biotechnol. 21: 942-946. [In Chinese]
  34. Zhang, Y., Z. Y. Wang, X. P. He, N. Liu, and B. R. Zhang. 2008. New industrial brewing yeast strains with ILV2 disruption and LSD1 expression. Int. J. Food Microbiol. 123: 18-24. https://doi.org/10.1016/j.ijfoodmicro.2007.11.070
  35. Zhang, Y. X., Q. Li, W. Shen, Y. Xie, and G. X. Gu. 2008. Effects of knockout ECM25/YJL210W gene in brewing yeast on beer flavor stability. Chinese J. Biotechnol. 24: 1420-1427. https://doi.org/10.1016/S1872-2075(08)60063-1
  36. Zhao, L. J., D. L. Wang, Y. L. Cheng, J. Z. Zhou, and B. G. Ge. 2006. Study on the control of aldehyde content in beer by molecular biological measures. Liquor-making Sci. Technol. 1: 45-47. [In Chinese]

Cited by

  1. 125th Anniversary Review: The Non-Biological Instability of Beer vol.117, pp.4, 2010, https://doi.org/10.1002/j.2050-0416.2011.tb00496.x
  2. Oleaginous yeast Yarrowia lipolytica mutants with a disrupted fatty acyl-CoA synthetase gene accumulate saturated fatty acid vol.46, pp.7, 2011, https://doi.org/10.1016/j.procbio.2011.03.011
  3. Integrated expression of the α-amylase, dextranase and glutathione gene in an industrial brewer’s yeast strain vol.28, pp.1, 2010, https://doi.org/10.1007/s11274-011-0811-6
  4. Engineering yeasts for raw starch conversion vol.95, pp.6, 2010, https://doi.org/10.1007/s00253-012-4248-0
  5. 125thAnniversary Review: Developments in brewing and distilling yeast strains : Developments in brewing and distilling yeast strains vol.119, pp.4, 2013, https://doi.org/10.1002/jib.104
  6. Development of Industrial Brewing Yeast with Low Acetaldehyde Production and Improved Flavor Stability vol.169, pp.3, 2010, https://doi.org/10.1007/s12010-012-0077-y
  7. Absence of fks1p in lager brewing yeast results in aberrant cell wall composition and improved beer flavor stability vol.30, pp.6, 2010, https://doi.org/10.1007/s11274-014-1617-0
  8. Construction of dextrin and isomaltose-assimilating brewer’s yeasts for production of low-carbohydrate beer vol.36, pp.8, 2010, https://doi.org/10.1007/s10529-014-1530-5
  9. A study on kinetics of beer ageing and development of methods for predicting the time to detection of flavour changes in beer : Methods for predicting the time of detection of flavour changes in beer vol.121, pp.1, 2010, https://doi.org/10.1002/jib.194
  10. 유전자 형질전환을 통한 쌀 전분 분해효소 재조합 효모균주의 개발과 발효특성조사 vol.52, pp.2, 2016, https://doi.org/10.7845/kjm.2016.6021
  11. Reduced acetaldehyde production by genome shuffling of an industrial brewing yeast strain : Reduced acetaldehyde production by genome shuffling of an industrial brewing yeast strain vol.123, pp.4, 2010, https://doi.org/10.1002/jib.457
  12. The use of atmospheric and room temperature plasma mutagenesis to create a brewing yeast with reduced acetaldehyde production vol.124, pp.3, 2010, https://doi.org/10.1002/jib.498
  13. The use of atmospheric and room temperature plasma mutagenesis to create a brewing yeast with reduced acetaldehyde production vol.124, pp.3, 2010, https://doi.org/10.1002/jib.498
  14. Adaptive Laboratory Evolution of Ale and Lager Yeasts for Improved Brewing Efficiency and Beer Quality vol.11, pp.1, 2010, https://doi.org/10.1146/annurev-food-032519-051715