DOI QR코드

DOI QR Code

Microencapsulation of Live Probiotic Bacteria

  • Islam, Mohammad Ariful (Department of Agricultural Biotechnology, Seoul National University) ;
  • Yun, Cheol-Heui (Department of Agricultural Biotechnology, Seoul National University) ;
  • Choi, Yun-Jaie (Department of Agricultural Biotechnology, Seoul National University) ;
  • Cho, Chong-Su (Department of Agricultural Biotechnology, Seoul National University)
  • Received : 2010.03.11
  • Accepted : 2010.06.30
  • Published : 2010.10.28

Abstract

Scientific research regarding the use of live bacterial cells for therapeutic purposes has been rapidly growing over the years and has generated considerable interest to scientists and health professionals. Probiotics are defined as essential live microorganisms that, when administered in adequate amounts, confer a health benefit on the host. Owing to their considerable beneficial health effects, these microorganisms are increasingly incorporated into dairy products; however, many reports have demonstrated their poor survival and stability. Their survival in the gastrointestinal tract is also questionable. To overcome these problems, microencapsulation techniques are currently receiving considerable attention. This review describes the importance of live probiotic bacterial microencapsulation using an alginate microparticulate system and presents the potentiality of various coating polymers such as chitosan and polylysine for improving the stability of this microencapsulation.

Keywords

References

  1. Afkhami, F., W. Ouyang, H. Chen, B. Lawuyi, T. Lim, and S. Prakash. 2007. Impact of orally administered microcapsules on gastrointestinal microbial flora: In-vitro investigation using computer controlled dynamic human gastrointestinal model. Artif. Cells Blood Substit. Immobil. Biotechnol. 35: 359-375. https://doi.org/10.1080/10731190701460226
  2. Albarghouthi, M., D. A. Fara, M. Saleem, T. El-Thaher, K. Matalka, and A. Badwan. 2000. Immobilization of antibodies on alginate-chitosan beads. Int. J. Pharm. 206: 23-34. https://doi.org/10.1016/S0378-5173(00)00470-1
  3. Akiyama, K. 1994. Effects of oral administration of Bifidobacterium breve on development of intestinal microflora in extremely premature infants. Acta Neonatol. Jpn. 30: 130-137.
  4. Anderson, J. W. and S. E. Gilliland. 1999. Effect of fermented milk (yogurt) containing Lactobacillus acidophilus L1 on serum cholesterol in hypercholesterolemic humans. J. Am. Coll. Nutr. 18: 43-50. https://doi.org/10.1080/07315724.1999.10718826
  5. Arunachalam, K., H. S. Gill, and R. K. Chandra. 2000. Enhancement of natural immune function by dietary consumption of Bifidobacterium lactis (HN019). Eur. J. Clin. Nutr. 54: 263- 267. https://doi.org/10.1038/sj.ejcn.1600938
  6. Audet, P., C. Paquin, and C. Lacroix. 1988. Immobilized growing lactic-acid bacteria with k-carrageenan-locust bean gum gel. Appl. Microbiol. Biotechnol. 29: 11-18. https://doi.org/10.1007/BF00258344
  7. Boyaval, P. and J. Goulet. 1988. Optimal conditions for production of lactic acid from cheese whey permeate by Ca-alginateentrapped Lactobacillus helveticus. Enzyme Microb. Tech. 10: 725-728. https://doi.org/10.1016/0141-0229(88)90116-0
  8. Canh, L. T., M. Mathieu, M. Mateescu, and M. Lacroix. 2004. Modified alginate and chitosan for lactic acid bacteria immobilization. Biotechnol. Appl. Biochem. 39: 347-354. https://doi.org/10.1042/BA20030158
  9. Cirone, P., J. M. Bourgeois, R. C. Austin, and P. L. Chang. 2002. A novel approach to tumor suppression with microencapsulated recombinant cells. Hum. Gene Ther. 13: 1157-1166. https://doi.org/10.1089/104303402320138943
  10. Chang, T. M. S. and S. Prakash. 1998. Therapeutic uses of microencapsulated genetically engineered cells. Mol. Med. Today 4: 221-227. https://doi.org/10.1016/S1357-4310(98)01246-5
  11. Chang, T. M. S. and S. Prakash. 2001. Procedures for microencapsulation of enzymes, cells and genetically engineered microorganisms. Mol. Biotechnol. 17: 249-260. https://doi.org/10.1385/MB:17:3:249
  12. Chang, T. M. S. 2005. Therapeutic applications of polymeric artificial cells. Nat. Rev. Drug Discov. 4: 221-235. https://doi.org/10.1038/nrd1659
  13. Chen, H., W. Ouyang, M. Jones, T. Haque, B. Lawuyi, and S. Prakash. 2005. In-vitro analysis of APA microcapsules for oral delivery of live bacterial cells. J. Microencapsul. 22: 539-547. https://doi.org/10.1080/02652040500162162
  14. Chen, H., W. Ouyang, M. Jones, T. Metz, C. Martoni, T. Haque, R. Cohen, B. Lawuyi, and S. Prakash. 2007. Preparation and characterization of novel polymeric microcapsules for live cell encapsulation and therapy. Cell Biochem. Biophys. 47: 159-168. https://doi.org/10.1385/CBB:47:1:159
  15. Chou, L. S. and B. Weimer. 1999. Isolation and characterization of acid- and bile-tolerant isolates from strains of Lactobacillus acidophilus. J. Dairy Sci. 82: 23-31. https://doi.org/10.3168/jds.S0022-0302(99)75204-5
  16. Crittenden, R., R. Weerakkody, L. Sanguansri, and M. Augustin. 2006. Synbiotic microcapsules that enhance microbial viability during nonrefrigerated storage and gastrointestinal transit. Appl. Environ. Microbiol. 72: 2280-2282. https://doi.org/10.1128/AEM.72.3.2280-2282.2006
  17. Cui, J. H., J. S. Goh, P. H. Kim, S. H. Choi, and B. J. Lee. 2000. Survival and stability of bifidobacteria loaded in alginate/ poly-L-lysine microparticles. Int. J. Pharm. 210: 51-59. https://doi.org/10.1016/S0378-5173(00)00560-3
  18. Cui, J. H., Q. R. Cao, Y. J Choi, K. H. Lee, and B. J. Lee. 2006. Effect of additives on the viability of bifidobacteria loaded in alginate poly-L-lysine microparticles during the freezedrying process. Arch. Pharm. Res. 29: 707-711. https://doi.org/10.1007/BF02968256
  19. Cui, J. H., Q. R. Cao, and B. J. Lee. 2007. Enhanced delivery of bifidobacteria and fecal changes after multiple oral administrations of bifidobacteria-loaded alginate poly-L-lysine microparticles in human volunteers. Drug Deliv. 14: 265-271. https://doi.org/10.1080/10717540601067844
  20. Dabour, N., A. Zihler, E. Kheadr, C. Lacroix, and I. Fliss. 2009. In vivo study on the effectiveness of pediocin PA-1 and Pediococcus acidilactici UL5 at inhibiting Listeria monocytogenes. Int. J. Food Microbiol. 133: 225-233 https://doi.org/10.1016/j.ijfoodmicro.2009.05.005
  21. Deguchi, Y., T. Morishita, and M. Mutai. 1985. Comparative studies on synthesis of water-soluble vitamins among human species of bifidobacteria. Agric. Biol. Chem. 49: 13-19. https://doi.org/10.1271/bbb1961.49.13
  22. Diaz-Ropero, M. P., R. Martín, S. Sierra, F. Lara-Villoslada, J. M. Rodríguez, J. Xaus, and M. Olivares. 2007. Two Lactobacillus strains, isolated from breast milk, differently modulate the immune response. J. Appl. Microbiol. 102: 337-343.
  23. Ding, W. K. and N. P. Shah. 2009. Effect of various encapsulating materials on the stability of probiotic bacteria. J. Food Sci. 74: M100-M107. https://doi.org/10.1111/j.1750-3841.2009.01067.x
  24. Fuller, R. 1989. Probiotics in man and animals. J. Appl. Bacteriol. 66: 365-378. https://doi.org/10.1111/j.1365-2672.1989.tb05105.x
  25. Gaserod, O., A. Sannes, and G. Skjak-BraeK. 1999. Microcapsules of alginate-chitosan. II. A study of capsule stability and permeability. Biomaterials 20: 773-783. https://doi.org/10.1016/S0142-9612(98)00230-0
  26. Gbassi, G. K., T. Vandamme, S. Ennahar, and E. Marchioni. 2009. Microencapsulation of Lactobacillus plantarum spp. in an alginate matrix coated with whey proteins. Int. J. Food Microbiol. 129: 103-105 https://doi.org/10.1016/j.ijfoodmicro.2008.11.012
  27. Gillian, Y. 2008. Symbiosis: The bacteria diet. Nat. Rev. Microbiol. 6: 174-175.
  28. Gilliland, S. E. 1990. Health and nutritional benefits from lactic acid bacteria. FEMS Microbiol. Rev. 7: 175-188. https://doi.org/10.1111/j.1574-6941.1990.tb01683.x
  29. Guoqiang, D., R. Kaul, and B. Mattiasson. 1991. Evaluation of alginate-immobilized Lactobacillus casei for lactate production. Appl. Microbiol. Biotechnol. 36: 309-314
  30. Hari, P. R., T. Chandy, and C. P. Sharma. 1996. Chitosan/ calcium-alginate beads for oral delivery of insulin. J. Appl. Polym. Sci. 59: 1795-1801. https://doi.org/10.1002/(SICI)1097-4628(19960314)59:11<1795::AID-APP16>3.0.CO;2-T
  31. Huguet, M. L., R. J. Neufeld, and E. Dellacherie. 1996. Calcium-alginate beads coated with polycationic polymers: Comparison of chitosan and DEAE-dextran. Process Biochem. 31: 347-353. https://doi.org/10.1016/0032-9592(95)00076-3
  32. Iyer, C., M. Phillips, and K. Kailasapathy. 2005. Release studies of Lactobacillus casei strain Shirota from chitosan-coated alginate-starch microcapsules in ex vivo porcine gastrointestinal contents. Lett. Appl. Microbiol. 41: 493-497. https://doi.org/10.1111/j.1472-765X.2005.01778.x
  33. Jenkins, B., S. Holsten, S. Bengmark, and R. Martindale. 2005. Probiotics: A practical review of their role in specific clinical scenarios. Nutr. Clin. Pract. 20: 262-270. https://doi.org/10.1177/0115426505020002262
  34. Joki, T., M. Machluf, A. Atala, J. Zhu, N. T. Seyfried, I. F. Dunn, T. Abe, R. S. Carroll, and P. M. Black. 2001. Continuous release of endostatin from microencapsulated engineered cells for tumor therapy. Nat. Biotechnol. 19: 35-39. https://doi.org/10.1038/83481
  35. Junzhang, L., Y. Weiting, L. Xiudong, X. Hongguo, W. Wei, and M. Xiaojun. 2008. In vitro and in vivo characterization of alginate-chitosan-alginate artificial microcapsules for therapeutic oral delivery of live bacterial cells. J. Biosci. Bioeng. 105: 660- 665. https://doi.org/10.1263/jbb.105.660
  36. King, G. A., A. J. Daugulis, P. Faulkner, and M. F. A. Goosen. 1987. Alginate-polylysine microcapsules of controlled membrane molecular-weight cutoff for mammalian-cell culture engineering. Biotechnol. Prog. 3: 231-240. https://doi.org/10.1002/btpr.5420030407
  37. King, A., S. Sandler, and A. Andersson. 2001. The effect of host factors and capsule composition on the cellular overgrowth on implanted alginate capsules. J. Biomed. Mater. Res. 57: 374-383. https://doi.org/10.1002/1097-4636(20011205)57:3<374::AID-JBM1180>3.0.CO;2-L
  38. Kitabatake, N. and Y. I. Kinekawa. 1998. Digestibility of bovine milk whey protein and $\beta$-lactoglobulin in vitro and in vivo. J. Agric. Food Chem. 46: 4917-4923. https://doi.org/10.1021/jf9710903
  39. Kitajima, H., Y. Sumida, R. Tanaka, N. Yuki, H. Takayama, and M. Fujimura. 1997. Early administration of Bifidobacterium breve to preterm infants: Randomised controlled trial. Arch. Dis. Child Fetal Neonatal Ed. 76: F101-F107. https://doi.org/10.1136/fn.76.2.F101
  40. Lanza, R. P., W. M. Kuhtreiber, D. Ecker, J. E. Staruk, and W. L. Chick. 1995. Xenotransplantation of porcine and bovine islets without immunosuppression using uncoated alginate microspheres. Transplantation 59: 1377-1384. https://doi.org/10.1097/00007890-199505270-00003
  41. Lee, D. W., S. J. Hwang, J. B. Park, and H. J. Park. 2003. Preparation and release characteristics of polymer-coated and blended alginate microspheres. J. Microencapsul. 20: 179-192. https://doi.org/10.3109/02652040309178060
  42. Lee, J. S., D. S. Cha, and H. J. Park. 2004. Survival of freezedried Lactobacillus bulgaricus KFRI 673 in chitosan-coated calcium alginate microparticles. J. Agric. Food Chem. 52: 7300-7305. https://doi.org/10.1021/jf040235k
  43. Lian, W. C., H. C. Hsiao, and C. C. Chou. 2003. Viability of microencapsulated bifidobacteria in simulated gastric juice and bile solution. Int. J. Food Microbiol. 86: 293-301. https://doi.org/10.1016/S0168-1605(02)00563-9
  44. Lim, F. and A. M. Sun. 1980. Microencapsulated islets as bioartificial endocrine pancreas. Science 210: 908-910. https://doi.org/10.1126/science.6776628
  45. Liu, P. and T. R. Krishnan. 1999. Alginate-pectin-poly-L-lysine particulate as a potential controlled release formulation. J. Pharm. Pharmacol. 51: 141-149. https://doi.org/10.1211/0022357991772259
  46. Ma, X. J., I. Vacek, and A. Sun. 1994. Generation of alginatepoly- L-lysine-alginate (Apa) biomicroscopies - the relationship between the membrane strength and the reaction conditions. Artif. Cells Blood Substit. Immobil. Biotechnol. 22: 43-69. https://doi.org/10.3109/10731199409117399
  47. Maeda, N., R. Nakamura, Y. Hirose, S. Murosaki, Y. Yamamoto, T. Kase, and Y. Yoshikai. 2009. Oral administration of heatkilled Lactobacillus plantarum L-137 enhances protection against influenza virus infection by stimulation of type I interferon production in mice. Int. Immunopharmacol. 9: 1122-1125. https://doi.org/10.1016/j.intimp.2009.04.015
  48. Marteau, P. and J. C. Rambaud. 1993. Potential of using lactic acid bacteria for therapy and immunomodulation in man. FEMS Microbiol. Rev. 12: 207-220.
  49. Martoni, C., J. Bhathena, M. L. Jones, A. M. Urbanska, H. Chen, and S. Prakash. 2007. Investigation of microencapsulated BSH active Lactobacillus in the simulated human GI tract. J. Biomed. Biotechnol. 2007: 13684.
  50. McIntosh, G. H., P. J. Royle, and M. J. Playne. 1999. A probiotic strain of L. acidophilus reduces DMH-induced large intestinal tumors in male Sprague-Dawley rats. Nutr. Cancer 35: 153-159. https://doi.org/10.1207/S15327914NC352_9
  51. Molin, G. 2001. Probiotics in foods not containing milk or milk constituents, with special reference to Lactobacillus plantarum 299v. Am. J. Clin. Nutr. 73: 380S-385S. https://doi.org/10.1093/ajcn/73.2.380s
  52. Narayani, R. and K. P. Rao. 1996. Gelatin microsphere cocktails of different sizes for the controlled release of anticancer drugs. Int. J. Pharm. 143: 255-258. https://doi.org/10.1016/S0378-5173(96)04685-6
  53. Norton, S., C. Lacroix, and J. C. Vuillemard. 1993. Effect of pH on the morphology of Lactobacillus helveticus in free-cell batch and immobilized-cell continuous fermentation. Food Biotechnol. 7: 235-251. https://doi.org/10.1080/08905439309549860
  54. Ouyang, W., H. Chen, M. L. Jones, T. Metz, T. Haque, C. Martoni, and S. Prakash. 2004. Artificial cell microcapsule for oral delivery of live bacterial cells for therapy: Design, preparation, and in-vitro characterization. J. Pharm. Pharm. Sci. 7: 315-324.
  55. Perdigon, G., E. Vintini, S. Alvarez, M. Medina, and M. Medici. 1999. Study of the possible mechanisms involved in the mucosal immune system activation by lactic acid bacteria. J. Dairy Sci. 82: 1108-1114. https://doi.org/10.3168/jds.S0022-0302(99)75333-6
  56. Park, J. K. and H. N. Chang. 2000. Microencapsulation of microbial cells. Biotechnol. Adv. 18: 303-319. https://doi.org/10.1016/S0734-9750(00)00040-9
  57. Peran, L., D. Camuesco, M. Comalada, A. Nieto, A. Concha, M. P. Diaz-Ropero, et al. 2005. Preventative effects of a probiotic, Lactobacillus salivarius ssp. salivarius, in the TNBS model of rat colitis. World J. Gastroenterol. 11: 5185-5192.
  58. Prakash, S. and T. M. S. Chang. 1996. Microencapsulated genetically engineered live E. coli DH5 cells administered orally to maintain normal plasma urea level in uremic rats. Nat. Med. 2: 883-887. https://doi.org/10.1038/nm0896-883
  59. Quong, D., J. N. Yeo, and R. J. Neufeld. 1999. Stability of chitosan and poly-L-lysine membranes coating DNA-alginate beads when exposed to hydrolytic enzymes. J. Microencapsul. 16: 73-82. https://doi.org/10.1080/026520499289329
  60. Rao, C. H. S., R. S. Prakasham, A. B. Rao, and J. S. Yadav. 2008. Functionalized alginate as immobilization matrix in enantioselective L (+) lactic acid production by Lactobacillus delbrucekii. Appl. Biochem. Biotechnol. 149: 219-228. https://doi.org/10.1007/s12010-007-8052-8
  61. Rihova, B. 2000. Immunocompatibility and biocompatibility of cell delivery systems. Adv. Drug Deliv. Rev. 42: 65-80. https://doi.org/10.1016/S0169-409X(00)00054-5
  62. Shu, Q., H. Lin, K. J. Rutherfurd, S. G. Fenwick, J. Prasad, P. K. Gopal, and H. S. Gill. 2000. Dietary Bifidobacterium lactis (HN019) enhances resistance to oral Salmonella typhimurium infection in mice. Microbiol. Immunol. 44: 213-222. https://doi.org/10.1111/j.1348-0421.2000.tb02486.x
  63. Shu, Q., F. Qu, and H. S. Gill. 2001. Probiotic treatment using Bifidobacterium lactis HN019 reduces weanling diarrhea associated with rotavirus and Escherichia coli infection in a piglet model. J. Pediatr. Gastroenterol. Nutr. 33: 171-177. https://doi.org/10.1097/00005176-200108000-00014
  64. Simenhoff, M. L., S. R. Dunn, and G. P. Zollner. 1996. Biomodulation of the toxic and nutritional effects of small bowel bacterial overgrowth in end-stage kidney disease using freeze-dried Lactobacillus acidophilus. Miner. Electrolyte Metab. 22: 92-96.
  65. Singh, J., A. Rivenson, M. Tomita, S. Shimamura, N. Ishibashi, and B. S. Reddy. 1997. Bifidobacterium longum, a lactic acidproducing intestinal bacterium inhibits colon cancer and modulates the intermediate biomarkers of colon carcinogenesis. Carcinogenesis 18: 833-841. https://doi.org/10.1093/carcin/18.4.833
  66. Siuta-Cruce, P. and J. Goulet. 2001. Improving probiotic survival rates. Food Technol. 55: 36-42.
  67. Steidler, L., W. Hans, and L. Schotte. 2000. Treatment of murine colitis by Lactococcus lactis secreting interleukin-10. Science 289: 1352-1355. https://doi.org/10.1126/science.289.5483.1352
  68. Sultana, K., G. Godward, N. Reynolds, R. Arumugaswamy, P. Peris, and K. Kailasapathy. 2000. Encapsulation of probiotic bacteria with alginate-starch and evaluation of survival in simulated gastrointestinal conditions and in yoghurt. Int. J. Food. Microbiol. 62: 47-55. https://doi.org/10.1016/S0168-1605(00)00380-9
  69. Sun, A. M., G. M. O'Shea, and M. F. Goosen. 1984. Injectable microencapsulated islet cells as a bioartificial pancreas. Appl. Biochem. Biotechnol. 10: 87-99. https://doi.org/10.1007/BF02783739
  70. Sun, A. M., M. F. Goosen, and G. O'Shea. 1987. Microencapsulated cells as hormone delivery systems. Crit. Rev. Ther. Drug Carrier Syst. 4: 1-12.
  71. Sun, W. R. and M. W. Griffiths. 2000. Survival of bifidobacteria in yogurt and simulated gastric juice following immobilization in gellan-xanthan beads. Int. J. Food Microbiol. 61: 17-25. https://doi.org/10.1016/S0168-1605(00)00327-5
  72. Susanna, R. and R. Pirjo. 2010. Protecting probiotic bacteria by microencapsulation: Challenges for industrial applications. Eur. Food Res. Technol. 231: 1-12. https://doi.org/10.1007/s00217-010-1246-2
  73. Tamine, A. Y., V. M. Marshall, and R. K. Robinson. 1995. Microbiological and technological aspects of milks fermented by bifidobacteria. J. Dairy Res. 62: 151-187. https://doi.org/10.1017/S002202990003377X
  74. Thomas, S. 2000. Alginate dressings in surgery and wound management - Part 1. J. Wound Care 9: 56-60. https://doi.org/10.12968/jowc.2000.9.2.26338
  75. Urbanska, A. M., J. Bhathena, and S. Prakash. 2007. Live encapsulated Lactobacillus acidophilus cells in yogurt for therapeutic oral delivery: Preparation and in vitro analysis of alginate-chitosan microcapsules. Can. J. Physiol. Pharmacol. 85: 884-893. https://doi.org/10.1139/Y07-057
  76. Urbanska, A. M., J. Bhathena, C. Martoni, and S. Prakash. 2009. Estimation of the potential antitumor activity of microencapsulated Lactobacillus acidophilus yogurt formulation in the attenuation of tumorigenesis in Apc (Min/+) mice. Dig. Dis. Sci. 54: 264- 273. https://doi.org/10.1007/s10620-008-0363-2
  77. Wang, T., I. Lacik, M. Brissova, A. V. Anilkumar, A. Prokop, D. Hunkeler, R. Green, K. Shahrokhi, and A. C. Powers. 1997. An encapsulation system for the immunoisolation of pancreatic islets. Nat. Biotechnol. 15: 358-362. https://doi.org/10.1038/nbt0497-358
  78. Weinbreck, F., I. Bodnar, and M. L. Marco. 2010. Can encapsulation lengthen the shelf-life of probiotic bacteria in dry products? Int. J. Food Microbiol. 136: 364-367. https://doi.org/10.1016/j.ijfoodmicro.2009.11.004
  79. Xie, Z. P., Y. Huang, Y. L. Chen, and Y. Jia. 2001. A new gel casting of ceramics by reaction of sodium alginate and calcium iodate at increased temperatures. J. Mater. Sci. Lett. 20: 1255- 1257. https://doi.org/10.1023/A:1010943427450
  80. Yasui, H., K. Shida, T. Matsuzaki, and T. Yokokura. 1999. Immunomodulatory function of lactic acid bacteria. Antonie Van Leeuwenhoek 76: 383-389. https://doi.org/10.1023/A:1002041616085

Cited by

  1. The role of components of Bifidobacterium and Lactobacillus in pathogenesis and serologic diagnosis of autoimmune thyroid diseases vol.2, pp.2, 2010, https://doi.org/10.3920/bm2010.0011
  2. Viability and delivery of immobilised Lactobacillus reuteri DPC16 within calcium alginate gel systems during sequential passage through simulated gastrointestinal fluids vol.2, pp.2, 2010, https://doi.org/10.3920/bm2011.0007
  3. 안지오텐신 전환효소 저해 활성 및 항산화 활성을 가진 젖산균의 분리 및 특성 vol.21, pp.10, 2011, https://doi.org/10.5352/jls.2011.21.10.1428
  4. Terminal Restriction Fragment Length Polymorphism 분석을 이용한 Lactobacillus plantarum의 생쥐 장관 정착 평가 vol.40, pp.4, 2010, https://doi.org/10.4014/kjmb.1208.08009
  5. Controlled release of Pantoea agglomerans E325 for biocontrol of fire blight disease of apple vol.161, pp.1, 2010, https://doi.org/10.1016/j.jconrel.2012.03.028
  6. Encapsulation of Lactic Acid Bacteria in Colloidosomes vol.28, pp.46, 2012, https://doi.org/10.1021/la303043n
  7. Study of PROBAC product influence on infant microbiota in a single-chamber colonic fermentation model GIS1 vol.63, pp.3, 2010, https://doi.org/10.1007/s13213-012-0558-9
  8. Encapsulation of Probiotic Bacteria in Biopolymeric System vol.53, pp.9, 2013, https://doi.org/10.1080/10408398.2011.573152
  9. Structural Stability and Viability of Microencapsulated Probiotic Bacteria: A Review vol.12, pp.6, 2013, https://doi.org/10.1111/1541-4337.12030
  10. Addition of Flours from Dahlia Tuber, Soybean and Garlic as Prebiotic Sources for Probiotic Encapsulation vol.24, pp.1, 2010, https://doi.org/10.6066/jtip.2013.24.1.14
  11. Role of sortase-dependent pili of Bifidobacterium bifidum PRL2010 in modulating bacterium–host interactions vol.110, pp.27, 2010, https://doi.org/10.1073/pnas.1303897110
  12. Alginate and Sulfanilamide Based DDS with Antibacterial Activity vol.63, pp.2, 2010, https://doi.org/10.1080/00914037.2013.769253
  13. Seaweed and human health vol.72, pp.3, 2010, https://doi.org/10.1111/nure.12091
  14. Microencapsulation of bacterial strains in graphene oxide nano-sheets using vortex fluidics vol.5, pp.47, 2015, https://doi.org/10.1039/c5ra04415d
  15. Development of a novel bi-coated combination capsule containing mosapride and probiotics for irritable bowel syndrome vol.20, pp.8, 2010, https://doi.org/10.3109/10837450.2014.954723
  16. Study on the effects of microencapsulatedLactobacillus delbrueckiion the mouse intestinal flora vol.32, pp.7, 2010, https://doi.org/10.3109/02652048.2015.1057249
  17. Survival of Microencapsulated Probiotic Bacteria after Processing and during Storage: A Review vol.56, pp.10, 2010, https://doi.org/10.1080/10408398.2013.798779
  18. 프로바이오틱스의 면역조절을 통한 알레르기 예방 및 치료효과 vol.31, pp.3, 2010, https://doi.org/10.13103/jfhs.2016.31.3.141
  19. Microencapsulation of probiotics by efficient vibration technology vol.34, pp.7, 2010, https://doi.org/10.1080/02652048.2017.1390005
  20. A New Method of Producing a Natural Antibacterial Peptide by Encapsulated Probiotics Internalized with Inulin Nanoparticles as Prebiotics vol.28, pp.4, 2010, https://doi.org/10.4014/jmb.1712.12008
  21. Biocontrol Processes in Fruits and Fresh Produce, the Use of Lactic Acid Bacteria as a Sustainable Option vol.2018, pp.2, 2018, https://doi.org/10.3389/fsufs.2018.00050
  22. Effects of polymerised whey protein-based microencapsulation on survivability of Lactobacillus acidophilus LA-5 and physiochemical properties of yoghurt vol.35, pp.5, 2010, https://doi.org/10.1080/02652048.2018.1538266
  23. Acidified Infant Formulas with Probiotics: Application Relevance from the Position of Functional Nutrition vol.18, pp.1, 2010, https://doi.org/10.15690/vsp.v18i1.1990
  24. Embedding Bacillus velezensis NH-1 in Microcapsules for Biocontrol of Cucumber Fusarium Wilt vol.85, pp.9, 2010, https://doi.org/10.1128/aem.03128-18
  25. Effect of added prebiotic (Isomalto-oligosaccharide) and Coating of Beads on the Survival of Microencapsulated Lactobacillus rhamnosus GG vol.39, pp.suppl2, 2019, https://doi.org/10.1590/fst.27518
  26. Optimal Criteria for the Selection of Probiotics, Based on their Mode of Action vol.63, pp.4, 2019, https://doi.org/10.2478/fv-2019-0039
  27. Progress in microencapsulation of probiotics: A review vol.19, pp.2, 2010, https://doi.org/10.1111/1541-4337.12532
  28. Antihyperlipidaemic effect of microencapsulated Lactobacillus plantarum LIP‐1 on hyperlipidaemic rats vol.100, pp.5, 2020, https://doi.org/10.1002/jsfa.10218