DOI QR코드

DOI QR Code

A New Protein of ${\alpha}$-Amylase Activity from Lactococcus lactis

  • Wasko, Adam (Department of Biotechnology, Human Nutrition and Food Commodities, University of Life Sciences in Lublin) ;
  • Polak-Berecka, Magdalena (Department of Biotechnology, Human Nutrition and Food Commodities, University of Life Sciences in Lublin) ;
  • Targonski, Zdzislaw (Department of Biotechnology, Human Nutrition and Food Commodities, University of Life Sciences in Lublin)
  • Received : 2010.02.02
  • Accepted : 2010.06.02
  • Published : 2010.09.28

Abstract

An extracellular ${\alpha}$-amylase from Lactococcus lactis IBB500 was purified and characterized. The optimum conditions for the enzyme activity were a pH of 4.5, temperature of $35^{\circ}C$, and enzyme molecular mass of 121 kDa. The genome analysis and a plasmid curing experiment indicated that $amy^+$ genes were located in a plasmid of 30 kb. An analysis of the phylogenetic relationships strongly supported a hypothesis of horizontal gene transfer. A strong homology was found for the peptides with the sequence of ${\alpha}$-amylases from Ralstonia pikettii and Ralstonia solanacearum. The protein with ${\alpha}$-amylase activity purified in this study is the first one described for the Lactococcus lactis species, and this paper is the first report on a Lactococcus lactis strain belonging to the amylolytic lactic acid bacteria (ALAB).

Keywords

References

  1. Agati, V., J. P. Guyot, J. Morlon-Guyot, P. Talamond, and D. J. Hounhouigan. 1998. Isolation and characterization of new amylolytic strains of Lactobacillus fermentum from fermented maize doughs (mawe and ogi) from Benin. J. Appl. Microbiol. 85: 512-520. https://doi.org/10.1046/j.1365-2672.1998.853527.x
  2. Altschul, S. F., T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman. 1997. Gapped BLAST and PSI - BLAST: A new generation of protein database search programs. Nucleic Acid Res. 25: 3389-3402. https://doi.org/10.1093/nar/25.17.3389
  3. Bardowski, J., S. D. Ehrlich, and A. Chopin. 1992. Tryptophan biosynthesis genes in Lactococcus lactis ssp. lactis. J. Bacteriol. 174: 63-65. https://doi.org/10.1128/jb.174.1.63-70.1992
  4. Bohak, I., W. Back, L. Richter, M. Eirman, W. Ludwig, and K. H. Schleifer. 1998. Lactobacillus amylolyticus sp. nov. isolated from beer malt and beer wort. Syst. Appl. Microbiol. 21: 360-364. https://doi.org/10.1016/S0723-2020(98)80045-3
  5. Burges-Casler, A., S. Imam, and M. Gould. 1992. High-molecular-weight amylase activities from bacteria degrading starch-plastic films. Appl. Environ. Microbiol. 57: 612-614.
  6. Burgess-Cassler, A. and P. A. Imam. 1991. Partial purification and comparative characterization of alpha-amylase secreted by Lactobacillus amylovorus. Curr. Microbiol. 23: 207-213. https://doi.org/10.1007/BF02092280
  7. Champ, M., O. Szylit, P. Raibaud, and N. Ait-Abdelkader. 1983. Amylase production by three Lactobacillus strains isolated from chicken crop. J. Appl. Bacteriol. 55: 487-493. https://doi.org/10.1111/j.1365-2672.1983.tb01689.x
  8. Doman-Pytka, M., P. Renault, and J. Bardowski. 2004. Gene-cassette for adaptation of Lactococcus lactis to a plant environment. Lait 84: 33-37. https://doi.org/10.1051/lait:2003047
  9. Fall, S., A. Mercier, F. Bertolla, A. Calteau, L. Gueguen, G. Perriere, T. M. Vogel, and P. Simonet. 2007. Horizontal gene transfer regulation in bacteria as a "spandrel" of DNA repair mechanisms. PLoS ONE 10: e1055.
  10. Fitzsimons, A., P. Hols, J. Jore, R. I. Leer, M. O'Connell, and J. Delcour. 1994. Development of an amylolytic Lactobacillus plantarum silage strain expressing the Lactobacillus amylovorus $\alpha$-amylase gene. Appl. Environ. Microbiol. 60: 3529-3535.
  11. Giraud, E. and G. Cuny. 1997. Molecular characterization of the $\alpha$-amylase genes of Lactobacillus plantarum A6 and Lactobacillus amylovorus reveals an unusual 3' end structure with direct tandem repeats and suggests a common evolutionary origin. Gene 198: 149-157. https://doi.org/10.1016/S0378-1119(97)00309-0
  12. Glazer, A. N. and H. Nikado. 1994. Microbial Biotechnology. W. H. Freeman and Co., New York, N. Y.
  13. Guyot, J. P., M. A. Brizuela, R. Rodriguez Sanoja, and J. Morlon-Guyot. 2003. Characterization and differentiation of Lactobacillus manihotivorans strains isolated from cassava sour starch. Int. J. Food Microbiol. 87: 187-192. https://doi.org/10.1016/S0168-1605(03)00048-5
  14. Eom, H.-J., J.-S. Moon, E.-J. Seo, and N. S. Han. 2009. Heterologous expression and secretion of Lactobacillus amylovorus $\alpha$-amylase in Leuconostoc citreum. Biotechnol. Lett. 31: 1783-1788. https://doi.org/10.1007/s10529-009-0079-1
  15. Imam, S. H., A. Burgess-Cassler, G. L. Cote, S. H. Gordon, and F. L. Baker. 1991. A study of cornstarch granule digestion by an unusually high molecular weight alpha-amylase secreted by Lactobacillus amylovorus. Curr. Microbiol. 22: 365-370. https://doi.org/10.1007/BF02092156
  16. Imanaka, T. and T. Kuriki. 1989. Pattern of action of Bacillus stearothermophilus neopullulanase on pullulan. J. Bacteriol. 171: 369-374. https://doi.org/10.1128/jb.171.1.369-374.1989
  17. Kuriki, T. and T. Imanaka. 1999. The concept of the $\alpha$-amylase family: Structural similarity and common catalytic mechanism. J. Biosci. Bioeng. 87: 557-565. https://doi.org/10.1016/S1389-1723(99)80114-5
  18. Lacks, S. A. and S. S. Springhorn. 1980. Renaturation of enzymes after polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. J. Biol. Chem. 15: 7467-7473.
  19. Laemmli, U. K. 1970. Cleavage of structural proteins during the asseambly of the head of bacteriophage $T_4$. Nature 227: 680-685. https://doi.org/10.1038/227680a0
  20. Lindgren, S. and O. Refai. 1983. Amylolytic lactic acid bacteria in fish silage. J. Appl. Bacteriol. 57: 221-228.
  21. Mesas, J. M., M. C. Rodriguez, and M. T. Alegre. 2004. Plasmid curing of Oenococcus oeni. Plasmid 51: 37-40. https://doi.org/10.1016/S0147-619X(03)00074-X
  22. Morlon-Guyot, J., J. P. Guyot, B. Pot, I. Jacobe de Haut, and M. Rimbault. 1998. Lactobacillus manihotivorans sp. nov., a new starch-hydrolyzing lactic acid bacterium isolated from cassava sour starch fermentation. Int. J. Syst. Bacteriol. 48: 1101-1109. https://doi.org/10.1099/00207713-48-4-1101
  23. Moseley, M. H. and L. Keay. 1970. Purification and characterisation of the amylase of B. subtilis NRRL B3411. Biotechnol. Bioeng. 12: 251-271. https://doi.org/10.1002/bit.260120207
  24. Nakamura, L. K. 1981. Lactobacillus amylovorus, a new starch-hydrolyzing species from cattle waste corn fermentation. Int. J. Syst. Bacteriol. 31: 56-63. https://doi.org/10.1099/00207713-31-1-56
  25. Nakamura, L. K. and C. D. Crowell. 1979. Lactobacillus amylovorus, a new starch-hydrolyzing species from swine waste-corn fermentation. Dev. Ind. Microbiol. 20: 535-540.
  26. Nakamura, Y., T. Itoh, H. Matsuda, and T. Gojobori. 2004. Biased biological funcions of horizontal transfer red genes in prokaryotic genomes. Nature Genet. 36: 760-766. https://doi.org/10.1038/ng1381
  27. Nwankwo, D., E. Anadu, and R. Usoro. 1989. Cassava fermenting organisms. Mirccn J. Appl. Microbiol. 5: 169-179. https://doi.org/10.1007/BF01741840
  28. Ohdan, K., T. Kuriki, H. Kaneko, J. Shimada, T. Takada, Z Fujimoto, H. Mizuno, and S. Okada. 1999. Characteristic of two forms of $\alpha$-amylases and structural implication. Appl. Environ. Microbiol. 65: 4652-4658.
  29. Olympia, M., H. Fukuda, H. Ono, Y. Kaneko, and M. Takano. 1995. Characterization of starch-hydrolyzing lactic acid bacteria isolated from a fermented fish and rice food, "Burong Isda," and its amylolytic enzyme. J. Ferment. Bioeng. 80: 124-130. https://doi.org/10.1016/0922-338X(95)93206-Y
  30. Paquet, V., C. Croux, G. Goma, and P. Soucaille. 1991. Purification and characterization of $\alpha$-amylase from Clostridium acetobutylicum ATCC 824. Appl. Environ. Microbiol. 57: 212-218.
  31. Petrov, K., Z. Urshev, and P. Petrova. 2008. L(+)-Lactic acid production from starch by a novel amylolytic Lactococcus lactis subsp. lactis B84. Food Microbiol. 25: 550-557. https://doi.org/10.1016/j.fm.2008.02.005
  32. Pompeyo, C. C., M. Suarez Gomez, S. Gasparian, and J. Morlon-Guyot. 1993. Comparison of amylolytic properties of Lactobacillus amylovorus and of Lactobacillus amylophilus. Appl. Mocrobiol. Biotechnol. 40: 266-269.
  33. Rodriguez, R. S., J. Morlon-Guyot, J. Jore, J. Pintado, N. Juge, and J. P. Guyot. 2000. Comparative characterization of complete and truncated forms of Lactobacillus amylovorus $\alpha$-amylase and role of the C-terminal direct repeats in raw-starch binding. Appl. Environ. Microbiol. 66: 3350-3356. https://doi.org/10.1128/AEM.66.8.3350-3356.2000
  34. Salminen, S., M. A. Deighton, Y. Benno, and S. L. Gorbach. 1998. Lactic acid bacteria in health and disease, pp. 211-253. In S. Salminen and A. von Wright (eds.). Lactic Acid Bacteria Microbiology and Functional Aspects. Marcel Dekker, Inc., New York.
  35. Sambrook, J. and D. W. Russell. 2001. Molecular Cloning: A Laboratory Manual, 3rd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
  36. Sanni, A. I., J. Morlon-Guyot, and J. P. Guyot. 2002. New efficient amylase-producing strains of Lactobacillus plantarum and L. fermentum isolated from different Nigerian traditional fermented foods. Int. J. Food Microbiol. 72: 53-62. https://doi.org/10.1016/S0168-1605(01)00607-9
  37. Satoh, E., T. Uchimura, T. Kudo, and K. Kamagata. 1997. Purification, characterization, and nucleotide sequence of an intracellular maltotriose-producing $\alpha$-amylase from Streptococcus bovis 148. Appl. Environ. Microbiol. 63: 4941-4944.
  38. Sen, S. and S. L. Chakrabarty. 1986. Amylase from Lactobacillus cellobiosus D-39 isolated from vegetable wastes; purification and characterization. J. Appl. Bacteriol. 60: 419-423. https://doi.org/10.1111/j.1365-2672.1986.tb05087.x
  39. Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins. 1997. The ClustalX Windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25: 4876-4882. https://doi.org/10.1093/nar/25.24.4876
  40. Van der Maarel, M. J., B. Van der Veen, J. Uitdehaag, H. Leemhuis, and L. Dijkhuizen. 2002. Properties and applications of starch-converting enzymes of the $\alpha$-amylase family. J. Biotechnol. 94: 137-155. https://doi.org/10.1016/S0168-1656(01)00407-2
  41. Vihinen, M. and P. Mantsala. 1989. Microbial amylolytic enzymes. Crit. Rev. Biochem. Mol. Biol. 24: 329-418. https://doi.org/10.3109/10409238909082556

Cited by

  1. Influence of carbohydrates on the isolation of lactic acid bacteria vol.110, pp.4, 2011, https://doi.org/10.1111/j.1365-2672.2011.04966.x
  2. Starch‐modifying enzymes of lactic acid bacteria – structures, properties, and applications vol.65, pp.1, 2013, https://doi.org/10.1002/star.201200192
  3. Gene Cloning and Characterization of an ${\alpha}$-Amylase from Alteromonas macleodii B7 for Enteromorpha Polysaccharide Degradation vol.24, pp.2, 2010, https://doi.org/10.4014/jmb.1304.04036
  4. Amylolytic Enzymes Acquired from L-Lactic Acid Producing Enterococcus faecium K-1 and Improvement of Direct Lactic Acid Production from Cassava Starch vol.183, pp.1, 2010, https://doi.org/10.1007/s12010-017-2436-1
  5. Whey protein influences the production and activity of extracellular protease from Pseudomonas fluorescens W3 vol.154, pp.None, 2022, https://doi.org/10.1016/j.lwt.2021.112865