DOI QR코드

DOI QR Code

Enantioselective Bioconversion Using Escherichia coli Cells Expressing Saccharomyces cerevisiae Reductase and Bacillus subtilis Glucose Dehydrogenase

  • Park, Hyun-Joo (Division of Biotechnology, The Catholic University of Korea) ;
  • Jung, Ji-Hye (Division of Biotechnology, The Catholic University of Korea) ;
  • Choi, Hye-Jeong (Division of Biotechnology, The Catholic University of Korea) ;
  • Uhm, Ki-Nam (Cronbio Com.) ;
  • Kim, Hyung-Kwoun (Division of Biotechnology, The Catholic University of Korea)
  • Received : 2010.03.15
  • Accepted : 2010.06.04
  • Published : 2010.09.28

Abstract

Ethyl (R, S)-4-chloro-3-hydroxybutanoate (ECHB) is a useful chiral building block for the synthesis of L-carnitine and hypercholesterolemia drugs. The yeast reductase, YOL151W (GenBank locus tag), exhibits an enantioselective reduction activity, converting ethyl-4-chlorooxobutanoate (ECOB) exclusively into (R)-ECHB. YOL151W was generated in Escherichia coli cells and purified via Ni-NTA and desalting column chromatography. It evidenced an optimum temperature of $45^{\circ}C$ and an optimum pH of 6.5-7.5. Bacillus subtilis glucose dehydrogenase (GDH) was also expressed in Escherichia coli, and was used for the recycling of NADPH, required for the reduction reaction. Thereafter, Escherichia coli cells co-expressing YOL151W and GDH were constructed. After permeablization treatment, the Escherichia coli whole cells were utilized for ECHB synthesis. Through the use of this system, the 30 mM ECOB substrate could be converted to (R)-ECHB.

Keywords

References

  1. Canovas, M., T. Torroglosa, and J. L. Iborra. 2005. Permeabilization of Escherichia coli cells in the biotransformation of trimethylammonium compounds into L-carnitine. Enzyme Microb. Technol. 25: 300-308.
  2. Chang, D., J. Zhang, B. Witholt, and Z. Li. 2004. Chemical and enzymatic synthetic methods for asymmetric oxidation of the C-C double bond. Biocatal. Biotransform. 22: 113-131. https://doi.org/10.1080/10242420410001710065
  3. Choi, Y. H., H. J. Choi, D. Kim, K. N. Uhm, and H. K. Kim. 2010. Asymmetric synthesis of (S)-3-chloro-1-phenyl-1-propanol using Saccharomyces cerevisiae reductase with high enantioselectivity. Appl. Microbiol. Biotechnol. 87: 185-193. https://doi.org/10.1007/s00253-010-2442-5
  4. Denyer, S. P. and J.-Y. Maillard. 2002. Cellular impermeability and uptake of biocides and antibiotics in Gram-negative bacteria. J. Appl. Microbiol. Symp. Suppl. 92: 35S-45S. https://doi.org/10.1046/j.1365-2672.92.5s1.19.x
  5. De Smet, M. J., J. Kingma, and B. Witholt. 1978. The effect of toluene on the structure and permeability of the outer and cytoplasmic membranes of Escherichia coli. Biochim. Biophys. Acta 506: 64-80. https://doi.org/10.1016/0005-2736(78)90435-2
  6. Ema, T., H. Yagasaki, N. Okita, M. Takeda, and T. Sakai. 2006. Asymmetic reduction of ketones using recombinant E. coli cells that produce a versatile carbonyl reductase with high enantioselectivity and broad substrate specificity. Tetrahedron 62: 6143-6149. https://doi.org/10.1016/j.tet.2006.04.061
  7. Eckstein, M., M. V. Filho, A. Liese, and U. Kragl. 2004. Use of an ionic liquid in a two-phase system to improve an alcohol dehydrogenase catalysed reduction. Chem. Commun. 2004: 1084-1085.
  8. Goldberg, K., K. Schroer, S. Lutz, and A. Liese. 2007. Biocatalytic ketone reduction - a powerful tool for the production of chiral alcohols - part I: Processes with isolated enzymes. Appl. Microbiol. Biotechnol. 76: 237-348. https://doi.org/10.1007/s00253-007-1002-0
  9. Groeger, H., C. Rollmann, F. Chamouleau, I. Sebastien, O. May, W. Wienand, and K. Drauz. 2007. Enantioselective reduction of 4-fluoroacetophenone at high substrate concentration using a tailor-made recombinant whole cell catalyst. Adv. Synth. Catal. 349: 709-712. https://doi.org/10.1002/adsc.200600606
  10. Groeger, H., W. Hummel, C. Rollmann, F. Chamouleau, H. Husken, H. Werner, et al. 2004. Preparative asymmetric reduction of ketones in a biphasic medium with an (S)-alcohol dehydrogenase under in situ-cofactor-recycling with a formate dehydrogenase. Tetrahedron 60: 633-640. https://doi.org/10.1016/j.tet.2003.11.066
  11. Hummel, W., K. Abokitse, K. Drauz, C. Rollmann, and H. Groeger. 2003. Towards a large-scale asymmetric reduction process with isolated enzymes: Expression of an (S)-alcohol dehydrogenase in E. coli and studies on the synthetic potential of this biocatalyst. Adv. Synth. Catal. 345: 153-159. https://doi.org/10.1002/adsc.200390001
  12. Johannes, T. W., R. D. Woodyer, and H. Zhao. 2007. Efficient regeneration of NADPH using an engineered phosphate dehydrogenase. Biotechnol. Bioeng. 96: 18-26. https://doi.org/10.1002/bit.21168
  13. Kaluzna, I. A., T. Matsuda, A. K. Sewell, and J. D. Stewart. 2004. Systematic investigation of Saccharomyces cerevisiae enzymes catalyzing carbonyl reductions. J. Am. Chem. Soc. 126: 12827-12832. https://doi.org/10.1021/ja0469479
  14. Kataoka, M., K. Yamamoto, H. Kawabata, M. Wada, K. Kita, H. Yanase, and S. Shimizu. 1999. Stereoselective reduction of ethyl 4-chloro-3-oxobutanoate by Escherichia coli transformant cells coexpressing the aldehyde reductase and glucose dehydrogenase genes. Appl. Microbiol. Biotechnol. 51: 486-490. https://doi.org/10.1007/s002530051421
  15. Kataoka, M., K. Kita, M. Wada, Y. Yasohara, J. Hasegawa, and S. Shimizu. 2003. Novel bioreduction system for the production of chiral alcohols. Appl. Microbiol. Biotechnol. 62: 437-445. https://doi.org/10.1007/s00253-003-1347-y
  16. Kizaki, N., Y. Yasohara, J. Hasegawa, M. Wada, M. Kataoka, and S. Shimizu. 2001. Synthesis of optically pure ethyl (S)-4-chloro-3-hydroxybutanoate by Escherichia coli transformant cells coexpressing the carbonyl reductase and glucose dehydrogenase genes. Appl. Microbiol. Biotechnol. 55: 590-595. https://doi.org/10.1007/s002530100599
  17. Ni, Y. and R. R. Chen. 2004. Accelerating whole-cell biocatalysis by reducing outer membrane permeability barrier. Biotechnol. Bioeng. 87: 804-811. https://doi.org/10.1002/bit.20202
  18. Schroer, K., U. Mackfeld, I. A. W. Tan, C. Wandrey, F. Heuser, S. Bringer-Mayer, et al. 2007. Continuous asymmetric ketone reduction processes with recombinant Escherichia coli. J. Biotechnol. 132: 438-444. https://doi.org/10.1016/j.jbiotec.2007.08.003
  19. Shorrock, V. J., M. Chartrain, and J. M. Woodley. 2004. An alternative bioreactor concept for application of an isolated oxidoreductase for asymmetric ketone reduction. Tetrahedron 60: 781-788. https://doi.org/10.1016/j.tet.2003.11.060
  20. Stampfer, W., K. Edegger, B. Kosjek, K. Faber, and W. Kroutil. 2004. Simple biocatalytic access to enantiopure (S)-1-heteroarylethanols employing a microbial hydrogen transfer reaction. Adv. Synth. Catal. 346: 57-62. https://doi.org/10.1002/adsc.200303210
  21. Wong, C. H., D. G. Drueckhammer, and H. M. Sweers. 1985. Enzymatic vs. fermentative synthesis: Thermostable glucose dehydrogenase catalyzed regeneration of NAD(P)H for use in enzymatic synthesis. J. Am. Chem. Soc. 107: 4028-4031. https://doi.org/10.1021/ja00299a044
  22. Wong, C. H. and G. M. Whitesides. 1981. Enzyme-catalyzed organic synthesis: NAD(P)H cofactor regeneration by using glucose-6-phosphate and the glucose-5-phosphate dehydrogenase from Leuconostoc mesenteroides. J. Am. Chem. Soc. 103: 4890-4899. https://doi.org/10.1021/ja00406a037
  23. Zhang, W., K. O'Conner, D. I. C. Wang, and Z. Li. 2009. Bioreduction with efficient recycling of NADPH by coupled permeabilized microorganisms. Appl. Environ. Microbiol. 75: 687-694. https://doi.org/10.1128/AEM.01506-08

Cited by

  1. Enzyme-mediated oxidations for the chemist vol.13, pp.2, 2010, https://doi.org/10.1039/c0gc00595a
  2. Production of chiral compound using recombinant Escherichia coli cells co-expressing reductase and glucose dehydrogenase in an ionic liquid/water two phase system vol.70, pp.3, 2010, https://doi.org/10.1016/j.molcatb.2011.02.013
  3. Enzymatic reductions for the chemist vol.13, pp.9, 2010, https://doi.org/10.1039/c1gc15424a
  4. Efficient Enantioselective Synthesis of (R)-[3,5-Bis(trifluoromethyl)phenyl] Ethanol by Leifsonia xyli CCTCC M 2010241 Using Isopropanol as Co- Substrate vol.23, pp.3, 2010, https://doi.org/10.4014/jmb.1203.03047
  5. Development of Saccharomyces cerevisiae Reductase YOL151W Mutants Suitable for Chiral Alcohol Synthesis Using an NADH Cofactor Regeneration System vol.23, pp.2, 2010, https://doi.org/10.4014/jmb.1209.09059
  6. Development of a Bioconversion System Using Saccharomyces cerevisiae Reductase YOR120W and Bacillus subtilis Glucose Dehydrogenase for Chiral Alcohol Synthesis vol.23, pp.10, 2010, https://doi.org/10.4014/jmb.1305.05030
  7. More efficient redox biocatalysis by utilising 1,4-butanediol as a ‘smart cosubstrate’ vol.15, pp.2, 2013, https://doi.org/10.1039/c2gc36797a
  8. Engineering of NADPH regenerators in Escherichia coli for enhanced biotransformation vol.97, pp.7, 2010, https://doi.org/10.1007/s00253-013-4750-z
  9. Characterization of the Kluyveromyces marxianus strain DMB1 YGL157w gene product as a broad specificity NADPH-dependent aldehyde reductase vol.5, pp.None, 2015, https://doi.org/10.1186/s13568-015-0104-9
  10. NADPH-generating systems in bacteria and archaea vol.6, pp.None, 2010, https://doi.org/10.3389/fmicb.2015.00742
  11. Designer Microorganisms for Optimized Redox Cascade Reactions – Challenges and Future Perspectives vol.357, pp.8, 2010, https://doi.org/10.1002/adsc.201500202
  12. Understanding the impact of the cofactor swapping of isocitrate dehydrogenase over the growth phenotype of Escherichia coli on acetate by using constraint-based modeling vol.13, pp.4, 2018, https://doi.org/10.1371/journal.pone.0196182
  13. Engineering an Alcohol Dehydrogenase for Balancing Kinetics in NADPH Regeneration with 1,4-Butanediol as a Cosubstrate vol.7, pp.18, 2010, https://doi.org/10.1021/acssuschemeng.9b03879