DOI QR코드

DOI QR Code

Membrane Perturbation Induced by Papiliocin Peptide, Derived from Papilio xuthus, in Candida albicans

  • Lee, June-Young (School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University) ;
  • Hwang, Jae-Sam (National Academy of Agricultural Science, RDA) ;
  • Hwang, Bo-Mi (School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University) ;
  • Kim, Jin-Kyoung (Department of Bioscience and Biotechnology, Konkuk University) ;
  • Kim, Seong-Ryul (National Academy of Agricultural Science, RDA) ;
  • Kim, Yang-Mee (Department of Bioscience and Biotechnology, Konkuk University) ;
  • Lee, Dong-Gun (School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University)
  • Received : 2010.04.07
  • Accepted : 2010.05.06
  • Published : 2010.08.28

Abstract

Previously, papiliocin was isolated from the swallowtail butterfly Papilio xuthus and its antimicrobial activity was suggested. In this study, the antifungal mechanism of papiliocin against Candida albicans was investigated. Confocal laser scanning microscopy (CLSM) and 1,6-diphenyl-1,3,5-hexatriene (DPH) fluorescence analysis indicated that papiliocin disturbed the fungal plasma membrane. Moreover, the assessment of the release of FITC-dextran (FD) from liposomes further demonstrated that the antifungal mechanism of papiliocin could have originated from the pore-forming action and that the radius of the pores was presumed to be anywhere from 2.3 to 3.3 nm.

Keywords

References

  1. Belokoneva, O. S., H. Satake, E. L. Mal'tseva, N. P. Pal'mina, E. Villegas, T. Nakajima, and G. Corzo. 2004. Pore formation of phospholipid membranes by the action of two hemolytic arachnid peptides of different size. Biochim. Biophys. Acta Biomembr. 1664: 182-188. https://doi.org/10.1016/j.bbamem.2004.05.007
  2. Blondelle, S. E. and R. A. Houghten. 1991. Hemolytic and antimicrobial activities of the twenty-four individual omission analogues of melittin. Biochemistry 30: 4671-4678. https://doi.org/10.1021/bi00233a006
  3. Gazit, E., W. J. Lee, P. T. Brey, and Y. Shai. 1994. Mode of action of the antibacterial cecropin B2: A spectrofluorometric study. Biochemistry 33: 10681-10692. https://doi.org/10.1021/bi00201a016
  4. Hwang, J.-S., J. Lee, B. Hwang, S.-H. Nam, E.-Y. Yun, S.-R. Kim, and D. G. Lee. 2010. Isolation and characterization of psacotheasin, a novel knottin-type antimicrobial peptide, from Psacothea hilaris. J. Microbiol. Biotechnol. [In Press]. https://doi.org/10.4014/jmb.1002.02003
  5. Jung, H. J., Y. Park, W. S. Sung, B. K. Suh, J. Lee, K. S. Hahm, and D. G. Lee. 2007. Fungicidal effect of pleurocidin by membrane-active mechanism and design of enantiomeric analogue for proteolytic resistance. Biochim. Biophys. Acta Biomembr. 1768: 1400-1405. https://doi.org/10.1016/j.bbamem.2007.02.024
  6. Jung, H. J., Y. B. Seu, and D. G. Lee. 2007. Candicidal action of resveratrol isolated from grapes on human pathogenic yeast C. albicans. J. Microbiol. Biotechnol. 17: 1324-1329.
  7. Kamio, Y., Y. Saito, N. Utoguchi, M. Kondoh, N. Koizumi, M. Fujii, and Y. Watanabe. 2005. Epinephrine is an enhancer of rat intestinal absorption. J. Control. Release 102: 563-568. https://doi.org/10.1016/j.jconrel.2004.11.003
  8. Kim, S. R., M. Y. Hong, S. W. Park, K. H. Choi, E. Y. Yun, T. W. Goo, et al. 2010. Characterization and cDNA cloning of a cecropin-like antimicrobial peptide, papiliocin from the swallowtail butterfly, Papilio xuthus. Mol. Cells [Epub ahead of print].
  9. Lentz, B. R. and S. W. Burgess. 1989. A dimerization model for the concentration dependent photophysical properties of diphenylhexatriene and its phospholipid derivatives, DPHpPC and DPHpPA. Biophys. J. 56: 723-733. https://doi.org/10.1016/S0006-3495(89)82720-1
  10. Liao, R. S., R. P. Rennie, and J. A. Talbot. 1999. Assessment of the effect of amphotericin B on the vitality of Candida albicans. Antimicrob. Agents Chemother. 43: 1034-1041.
  11. Makovitzki, A. and Y. Shai. 2005. pH-dependent antifungal lipopeptides and their plausible mode of action. Biochemistry 44: 9775-9784. https://doi.org/10.1021/bi0502386
  12. Mancheño, J. M., M. Oñaderra, A. Martínez del Pozo, P. Díaz- Achirica, D. Andreu, L. Rivas, and J. G. Gavilanes. 1996. Release of lipid vesicle contents by an antibacterial cecropin A-melittin hybrid peptide. Biochemistry 35: 9892-9899. https://doi.org/10.1021/bi953058c
  13. Merrifield, B. 1986. Solid phase synthesis. Science 232: 341-347. https://doi.org/10.1126/science.3961484
  14. Parasassi, T., G. De Stasio, R. M. Rusch, and E. Gratton. 1991. A photophysical model for diphenylhexatriene fluorescence decay in solvents and in phospholipid vesicles. Biophys. J. 59: 466-475.
  15. Park, S. C., M. H. Kim, M. A. Hossain, S. Y. Shin, Y. Kim, L. Stella, J. D. Wade, Y. Park, and K. S. Hahm. 2008. Amphipathic alpha-helical peptide, HP (2-20), and its analogues derived from Helicobacter pylori: Pore formation mechanism in various lipid compositions. Biochim. Biophys. Acta Biomembr. 1778: 229-241. https://doi.org/10.1016/j.bbamem.2007.09.020
  16. Park, Y., S. H. Jang, D. G. Lee, and K. S. Hahm. 2004. Antinematodal effect of antimicrobial peptide, PMAP-23, isolated from porcine myeloid against Caenorhabditis elegans. J. Pept. Sci. 10: 304-311. https://doi.org/10.1002/psc.518
  17. Rex, S. 1996. Pore formation induced by the peptide melittin in different lipid vesicle membranes. Biophys. Chem. 58: 75-85. https://doi.org/10.1016/0301-4622(95)00087-9
  18. Sheppard, R. 2003. The fluorenylmethoxycarbonyl group in solid phase synthesis. J. Pept. Sci. 9: 545-552. https://doi.org/10.1002/psc.479
  19. Sung, W. S., I. S. Lee, and D. G. Lee. 2007. Damage to the cytoplasmic membrane and cell death caused by lycopene in Candida albicans. J. Microbiol. Biotechnol. 17: 1797-1804.
  20. Toptygin, D. and L. Brand. 1993. Fluorescence decay of DPH in lipid membranes: Influence of the external refractive index. Biophys. Chem. 48: 205-220. https://doi.org/10.1016/0301-4622(93)85011-6

Cited by

  1. The Chemistry of Drugs to Treat Candida albicans vol.19, pp.28, 2010, https://doi.org/10.2174/1568026619666191025153124
  2. Development of a Novel Short Synthetic Antibacterial Peptide Derived from the Swallowtail Butterfly Papilio xuthus Larvae vol.30, pp.9, 2010, https://doi.org/10.4014/jmb.2003.03009