DOI QR코드

DOI QR Code

Diversity and Abundance of Ammonia-Oxidizing Bacteria in Activated Sludge Treating Different Types of Wastewater

  • Baek, Kyung-Hwa (Environmental Biotechnology Research Center, KRIBB) ;
  • Park, Chul (Department of Civil and Environmental Engineering, University of Massachusetts) ;
  • Oh, Hee-Mock (Environmental Biotechnology Research Center, KRIBB) ;
  • Yoon, Byung-Dae (Environmental Biotechnology Research Center, KRIBB) ;
  • Kim, Hee-Sik (Environmental Biotechnology Research Center, KRIBB)
  • Received : 2009.07.17
  • Accepted : 2010.02.23
  • Published : 2010.07.28

Abstract

The diversity and abundance of ammonia-oxidizing bacteria (AOB) in activated sludge were compared using PCR-DGGE and real-time PCR assays. Activated sludge samples were collected from five different types of wastewater treatment plants (WWTPs) mainly treating textile, paper, food, and livestock wastewater or domestic sewage. The composition of total bacteria determined by PCR-DGGE was highly diverse between the samples, whereas the community of AOB was similar across all the investigated activated sludge. Total bacterial numbers and AOB numbers in the aerated mixed liquor were in the range of $1.8{\times}10^{10}$ to $3.8{\times}10^{12}$ and $1.7{\times}10^6$ to $2.7{\times}10^{10}$ copies/l, respectively. Activated sludge from livestock, textile, and sewage treating WWTPs contained relatively high amoA gene copies (more than $10^5$ copies/l), whereas activated sludge from food and paper WWTPs revealed a low number of the amoA gene (less than $10^3$ copies/l). The value of the amoA gene copy effectively showed the difference in composition of bacteria in different activated sludge samples and this was better than the measurement with the AOB 16S rRNA or total 16S rRNA gene. These results suggest that the quantification of the amoA gene can help monitor AOB and ammonia oxidation in WWTPs.

Keywords

References

  1. Arlene, K. R., J. R. Snape, D. Fearnside, M. R. Barer, T. P. Curtis, and I. M. Head. 2003. Composition and diversity of ammonia-oxidizing bacterial communities in wastewater treatment reactors of different design treating identical wastewater. FEMS Microbiol. Ecol. 43: 195-206. https://doi.org/10.1111/j.1574-6941.2003.tb01059.x
  2. Baldwin, B., C. H. Nakatsu, and L. Nies. 2003. Detection and enumeration of aromatic oxygenase genes by multiplex and real-time PCR. Appl. Environ. Microbiol. 69: 3350-3358. https://doi.org/10.1128/AEM.69.6.3350-3358.2003
  3. Boon, N., W. D. Windt, W. Verstraete, and E. M. Top. 2002. Evaluation of nested PCR-DGGE (denaturing gradient gel electrophoresis) with group-specific 16S rRNA primers for the analysis of bacterial communities from different wastewater treatment plants. FEMS Microbiol. Ecol. 39: 101-112.
  4. Curtis, T. P. and N. G. Craine. 1998. The comparison of the diversity of activated sludge plants. Water Sci. Technol. 37: 71-78.
  5. Dionisi, H. M., G. Hamrs, A. C. Layton, I. R. Gregory, J. Parker, S. A. Hawkins, K. G. Robinson, and G. S. Sayler. 2003. Power analysis for real-time PCR quantification of genes in activated sludge and analysis of the variability introduced by DNA extraction. Appl. Environ. Microbiol. 69: 6597-6604. https://doi.org/10.1128/AEM.69.11.6597-6604.2003
  6. Harms, G., A. C. Layton, H. M. Dionisi, I. R. Garrett, S. A. Hawkins, K. G. Robinson, and G. Sayler. 2003 Real-time PCR quantification of nitrifying bacteria in a municipal wastewater treatment plant. Environ. Sci. Technol. 37: 343-351. https://doi.org/10.1021/es0257164
  7. Heid, C. A., J. Stevens, K. J. Livak, and P. M. Williams. 1996 Real-time quantitative PCR. Gen. Res. 6: 986-994. https://doi.org/10.1101/gr.6.10.986
  8. Juretschko, S., G. Timmermann, M. Schmid, K. Scheifer, A. Pommerening-Roser, H. Koops, and M. Wagner. 1998. Combined molecular and conventional analyses of nitrifying bacterium diversity in activated sludge: Nitrosococcus mobilis and Nitrospiralike bacteria as dominant populations. Appl. Environ. Microbiol. 64: 3042-3051.
  9. Kowalchuk, G. A., J. R. Stephen, W. de Boer, J. I. Prosser, T. M. Embley, and J. W. Woldendorp. 1997. Analysis of ammonia-oxidizing bacteria of the beta subdivision of the class Proteobacteria in coastal sand dunes by denaturing gradient gel electrophoresis and sequencing of PCR-amplified 16S ribosomal DNA fragments. Appl. Environ. Microbiol. 63:1489-1497.
  10. Layton, A. C., H. M. Dionisi, H. W. Kuo, K. G. Robinson, V. M. Garrett, A. Meyers, and G. S. Salyer. 2005. Emergence of competitive dominant ammonia-oxidizing bacterial populations in a full-scale industrial wastewater treatment plant. Appl. Environ. Microbiol. 71: 1105-1108. https://doi.org/10.1128/AEM.71.2.1105-1108.2005
  11. Limpiyakorn, T., Y. Shinohara, F. Kurisu, and O. Yagi. 2005. Communities of ammonia-oxidizing bacteria in activated sludge of various sewage treatment plants in Tokyo. FEMS Microbiol. Ecol. 54: 205-217. https://doi.org/10.1016/j.femsec.2005.03.017
  12. Lopez-Gutierrez, J. C., S. Henry, S. Hallet, F. Martin-Laurent, G. Catroux, and L. Philippot. 2004. Quantification of a novel group of nitrate-reducing bacteria in environment by real-time PCR. J. Microbiol. Methods 57: 399-407. https://doi.org/10.1016/j.mimet.2004.02.009
  13. Muyzer, G., E. C. de Waal, and A. Uitterlinden. 1993. Profiling of complex microbial populations using denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59: 695-700.
  14. Nicolaisen, M. H. and N. B. Ramsing. 2002. Denaturing gradient gel electrophoresis (DGGE) approaches to study the diversity of ammonia-oxidizing bacteria. J. Microbiol. Methods 50: 189-203. https://doi.org/10.1016/S0167-7012(02)00026-X
  15. Okano, Y., K. R. Hristova, C. M. Leutenegger, L. E. Jackson, R. F. Denison, B. Gebreyesus, D. Lebauer, and K. M. Scow. 2004. Amplification of real-time PCR to study effects of ammonium on population size of ammonia-oxidizing bacteria in soil. Appl. Environ. Microbiol. 70: 1008-1016. https://doi.org/10.1128/AEM.70.2.1008-1016.2004
  16. Rao, P. S. C., R. E. Jessup, and K. R. Reddy. 1984. Simulation of nitrogen dynamics in flooded soils. Soil Sci. 138: 54-62. https://doi.org/10.1097/00010694-198407000-00009
  17. Purkhold, U., A. Pommerening-Roser, S. Juretschko, M. C. Schmid, H. Koops, and M. Wagner. 2000. Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: Implications for molecular diversity surveys. Appl. Environ. Microbiol. 66: 5368-5382. https://doi.org/10.1128/AEM.66.12.5368-5382.2000
  18. Rotthauwe, J. H., K. P. Witzel, and W. Liesack. 1997. The ammonia monooxygenase structural gene amoA as a functional marker: Molecular fine-scale analysis of natural ammoniaoxidizing populations. Appl. Environ. Microbiol. 63: 4704-4712.
  19. Saikaly, P. E., P. G. Stroot, and D. B. Oerther. 2005. Use of 16S rRNA gene terminal restriction fragment analysis to assess the impact of solid retention time on the bacterial diversity of activated sludge. Appl. Environ. Microbiol. 71: 5814-5822. https://doi.org/10.1128/AEM.71.10.5814-5822.2005
  20. Shannon, C. E. and W. Weaver, 1949. The Mathematical Theory of Communication. University of Illinois Press, Urbana, IL.
  21. Tamura, K., M. Nei, and S. Kumar. 2004. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc. Natl. Acad. Sci. U.S.A. 101: 11030-11035. https://doi.org/10.1073/pnas.0404206101
  22. Tawan, L., S. Yuko, K. Futoshi, and Y. Osami. 2005. Communities of ammonia-oxidizing bacteria in activated sludge of various sewage treatment plants in Tokyo. FEMS Microbiol. Ecol. 54: 205-217. https://doi.org/10.1016/j.femsec.2005.03.017
  23. Tawan, L., K. Futoshi, and Y. Osami. 2006. Development and application of real-time PCR for quantification of specific ammonia-oxidizing bacteria in activated sludge of sewage treatment systems, Appl. Microbiol. Biotechnol. 72: 1004-1013. https://doi.org/10.1007/s00253-006-0366-x
  24. Wagner, M., G. Rath, G. Amann, H. Koops, and K. Schleifer. 1995 In situ identification of ammonia-oxidizing bacteria. Syst. Appl. Microbiol. 18: 251-264. https://doi.org/10.1016/S0723-2020(11)80396-6
  25. Wagner, M. and A. Loy. 2002. Bacterial community composition and function in sewage treatment systems. Curr. Opin. Biotechnol. 13: 218-227. https://doi.org/10.1016/S0958-1669(02)00315-4

Cited by

  1. Abundance of ammonia‐oxidizing bacteria and archaea in industrial and domestic wastewater treatment systems vol.80, pp.2, 2012, https://doi.org/10.1111/j.1574-6941.2012.01296.x
  2. Analysis and Quantification of Ammonia-Oxidizing Bacteria Community with amoA Gene in Sewage Treatment Plants vol.22, pp.9, 2012, https://doi.org/10.4014/jmb.1204.04047
  3. Microbial Floral Dynamics of Chinese Traditional Soybean Paste (Doujiang) and Commercial Soybean Paste vol.23, pp.12, 2010, https://doi.org/10.4014/jmb.1306.06004
  4. Modeling Spatially Variant Processes in Plug-Flow-Like Activated Sludge Reactors vol.142, pp.6, 2010, https://doi.org/10.1061/(asce)ee.1943-7870.0001089
  5. Advantages of intermittently aerated SBR over conventional SBR on nitrogen removal for the treatment of digested piggery wastewater vol.11, pp.3, 2017, https://doi.org/10.1007/s11783-017-0941-7
  6. Heterotrophic Nitrifiers Dominate Reactors Treating Incineration Leachate with High Free Ammonia Concentrations vol.6, pp.11, 2010, https://doi.org/10.1021/acssuschemeng.8b03512
  7. Nitrification Rates Are Affected by Biogenic Nitrate and Volatile Organic Compounds in Agricultural Soils vol.10, pp.None, 2010, https://doi.org/10.3389/fmicb.2019.00772
  8. Chlorpyrifos degradation under the influence of climate factors and fertilizer regimes in a tropical vertisol vol.158, pp.1, 2020, https://doi.org/10.1017/s0021859620000258
  9. Do methanotrophs drive phosphorus mineralization in soil ecosystem? vol.67, pp.6, 2010, https://doi.org/10.1139/cjm-2020-0254
  10. Attainment and characterization of a microbial consortium that efficiently degrades biphenyl and related substances vol.173, pp.None, 2010, https://doi.org/10.1016/j.bej.2021.108073
  11. Revealing the dissimilar structure of microbial communities in different WWTPs that treat fish-canning wastewater with different NaCl content vol.44, pp.None, 2010, https://doi.org/10.1016/j.jwpe.2021.102328